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Preface

This study is intended to add to the available technology for the

modeling of electromagnetic scattering from random rough surfaces. Two

primary contributions are made in this thesis. First, a true joint

exponential probability density function is introduced as a new model for

rough surface representation and it's electromagnetic scattering

properties are studied. Second, a digital technique is developed to

generate rough surfaces using only marginal density functions. The

electromagnetic scattering properties of these surfaces are then

found using standard scattering prediction techniques.

As usual with this type of effort, no one person can take full

credit. A great deal of the credit must go my advisor, Dr. Vital Pyati,

who derived the true exponential pdf used in this thesis and whose

assistance at several key points in the development of this thesis was

critical. A very special thanks goes to Lt Col Wm. Baker without

whom this thesis might never have gotten past the point of being just an

assembly of mathematical problems with no solutions. Additionally I

would like to thank Dr. Robert J. Papa of RADC, one of the recognized

authorities in the field of rough surface scattering, for lending his

valued assistance. I also thank Mr. Jim Common of AFWAL/AAWP-3 for his

assistance with the Radar Cross Section prediction code, Dr. Peter S.
on 7or

Maybeck, and all the rest of the AFIT faculty. Finally, I would like to ;

thank John, Pam and the rest of the outstanding staff of the AFIT

Library for their excellent support.
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On a personal level I want to thank my classmates, the greatest

bunch of people I have ever had the opportunity to be associated with.

A special note of appreciation goes to Lt Clarence Reif with whom I had

the pleasure of working especially close with throughout this thesis.

All of them made this last year and a half very special to me. Mostly,

however, I want to thank my family for all of their support. To my wife

Tami, your the greatest, thanks for all of your patience and help.

Finally, to my son Chuckie, thank you for being here to remind what it

is all about.
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Abstract

The purpose of this investigation is to extend the capability of

statistical modeling for the problem of electromagnetic scattering by

random rough surfaces. A majority of prior studies considered the well

known Gaussian joint probability density function (pdf), partly because

of its mathematical convenience. About 25 years ago, a second pdf

called exponential 1 type was introduced and has since been used by

several workers in the field. In this thesis it is shown that this

exponential-type pdf fails to meet an essential statistical requirement.

To remedy this situation, an exponential pdf that satisfies all the

statistical requirements is derived. The scattering properties of

surfaces modeled by this new exponential pdf are then formulated.

In the second part of this thesis a user-oriented computer program

is developed to create random surfaces whose statistical description is

at the will of the user requiring only the input of a monovariate pdf.

By using this program, the average radar cross section properties of

surfaces modeled by the Gaussian and exponential pdf's are investigated

further. Finally, applications of the work completed in this thesis to

problems needing further investigation are outlined.

xi



ELECTROfMAGNETIC SCATTERING BY AN EXONENTIALLY

DISTRIBUTED ROUGH SURFACE WITH THE INTRODUCTION

OF A ROUGH SURFACE GENERATION TECHNIQUE

I. Introduction

1. Background

The theory of scattering of electromagnetic waves from rough

surfaces has many applications. Among these are effects of roughness

upon the reflectance of optical devices [21), the effects of rough

terrain and multipath propagation on radar system performance [14] and

the remote sensing of surface roughness parameters [25], [8]. The

ability to predict and control the rough surface scattering phenomena is

dependent upon ones ability to accurately model the rough surfaces

themselves.

Extensive research has gone into rough surface scattering theory

where the rough surface is modeled by a joint probability density V

function (jpdf). In these models the surface heights are random

variables. However, the research has been limited to the use of only

two types of joint densities as rough surface models. In addition, one

of these two jpdf's has characteristics which make its use as a surface

model inappropriate. Therefore, development of scattering properties of

surfaces with different jpdf representation as well as a better overall

understanding of rough surface scattering is desirable.

. w .. ,
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As noted by Pyati, for a joint probability density function to

properly represent a surface, it must not only satisfy the statistical

properties required of a second order jpdf but it also must satisfy any

additional conditions imposed by the physics of the problem (4:3).

Clearly, two such physical conditions should be that:

(1) As the distance between any two points (r) on the

surface goes to infinity, the heights, (1 and 2' at

the two points should be statistically independent.

(2) As the distance between any two points on the surface

goes to zero, the probability that the two points are

equal in height should go to one.

The two jpdf's that are commonly used in the current literature to

represent random rough surfaces are the joint Gaussian pdf (Eq (1))

2 _ 2< Pr) + <2

p K r) e 1 1 2 2 v
2 1 2 2 21] f

2 -th - r) 2 h 1 p(r) J

surface heights at points (x ,y1 ) and (x2 ,y 2 )

i,21 12 2

P(r) a the correlation function P

2
h variance of 1,2

2



and the joint exponential-type pdf (Eq (2)).

ET _(__(_3

2 1 •/2;r) P

1/2
- 2-1

I 12 2:• exp{~ 2-- ~Pr)+~

- 2 (Jr)

(2)

The joint Gaussian pdf satisfies conditions (1) and (2) and is a valid

jpdf for representing rough surfaces. The exponential-type jpdf fails

to satisfy condition 1, some consequences of which will be shown in this

thesis, and may therefore not be valid for rough surface representation.

'Al
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Pyati has derived the following true ex-ponential joint probability

density function that satisfies both of the physical conditions given

above [17:8]:

1 +
P2 (,ý r 4h 2 (1P 2fl (L- lP2nP 2 (•I ,';rs .

X. 10 + (8/n 2) sgn(Q ) sgn(%2)

h (1-_2

'2n.

"(2n + 1) 2n"
n~o L,

(3) ,

where

Ia nth order modified bessel function of the first kind

sgn(x) a the sign of x or zero if x = zero.

The scattering properties of surfaces modeled by the above exponential

jpdf will be studied here.

In addition to the lack of density functions to use as models,

there has heretofore never been presented a method by which the the
%'4

predicted scattering from the existing models could be checked against

the scattering from real surfaces that meet the statistics. This thesis

* . will a1dress this problem.
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2. Statement of the Problem

The problem is divided into two primary parts. Part A will involve

the prediction of the average RCS per unit area of a surface represented

by Pyati's exponential jpdf using somewhat traditional rough

surface scattering theory. Part B involves the development of an

entirely new approach to the prediction of rough surface scattering for

surfaces represented by probability density functions.

3. Assumptions and Limitations

The following assumptions will be made in this thesis:

(1) The radii of curvature of the surface irregularities are large

with respect to a wavelength. This restriction permits one to

use the physical optics method to solve the electromagnetic

.9k integral equations introduced in the next chapter.

(2) Multiple scattering and shadowing will be ignored.The effects

of shadowing are being accounted for in another thesis by Reif

[19] concurrent with this one.

(3) The surfaces will be assumed to be perfect conductors.

(4) The correlation length e is assumed to be much less than the

either dimension of the surface. For instance, if the surface

is chosen to be a rectangle with transverse dimensions of Lx

and Ly, C - Lx, Ly. This condition makes certain that the

scattering is a result of the ensemble surface roughness

rather than from a statistically small portion of the surface

that may not be representative of the surface as a whole.

5



(5) The Gaussian correlation coefficient model,

*W 2 2
P(r) = exp [-rn A will be used be used to maintain

consistency with previous calculations based upon

Eqs (1) and (2), [20:7211 thus allowing direct

comparisons of the results.

4. Approach

For Part A of the analysis a general solution for the average RCS

per unit area of rough surfaces represented by joint probability density

functions is formulated from the Stratton-Chu integral equation for

electromagnetic scattering. The general solution arrived at is that

which was previously obtained by Beckmann [51. The general solution is

then applied to Pyati's exponential jpdf and the results are compared to

those for Gaussian and exponential-type surfaces.

In Part B, a technique is developed that allows the creation of

correlated rough surfaces from the one dimensional marginal pdf of the

surface heights. This technique is then used to create rough surfaces

that obey Gaussian and exponential statistics. The physical optics

radar cross sections of these surfaces is then calculated using a

standard RCS prediction software package. These results are then

compared to the predictions in Part A.

6



5. Support

The only support required for Part A is an IBM" personal computer

system and associated software, all of which are the personal property

of the author. The RCS prediction package required for Part B is owned

by AFWAL/AAWP-3 and is hosted on their VAX 11/785. A personal copy of

this code along with access to the VAX was provided by AFWAL/AAWP-3.

"S
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ii. Theo~

In this section two equations for the average RCS per unit area of

random rough surfaces will be derived. The derivation of each equation

involves assumptions and approximation that will be pointed out as

they occur.

1. Stratton-Chu and Helmholtz Equations

A starting point for discussions of electromagnetic scattering

theory is the set of equations known as the Stratton-Chu integral

equations (Eqs (4) and (5)) [23:466].

T(P') w~q V - 7 + P )dv-

4- fsf- }{itO(n~ HJP + n T)" E> P V+ (n "EJVIP ds (4)

HT(P') ZTJJ IC Y) 7 tV dv

vP

+ n-~ T {C(I~r~ 9 (n iT V - C n 7 ds (5)

The above equations were derived by applying the vector analog ot"

Green's theorem to Maxwell's field equations [23:464,465). The left

side of the equations represent the complex electric and magnetic t'ield

vectors at a point P' located within the closed volume of the first

% %
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integral of either equation. The closed surface of the second integral

is that surface which encloses the volume of the first integral. Within

the context of these equations, p is the charge density within the

closed volume and m represents any current sources within the volume.

The operator (*) indicates that the complex conjugate of the quantity is

to be used. The _E's and H's within the second integral of Eqs (4) and

(5) represent the total electric and magnetic fields at the interior

surface of the volume. The symbol ?P is the free-space Green's function.

This scenario is depicted in Fig. 1. 0

r.4
S1,

Fig. 1. Geometry Associated with the Stratton-Chu Equations

9
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The geometry of the rough surface scattering problem to be worked in

this thesis is that of an open surface, Fig. (2).

Z!

COP

Fig. 2. Rough Surface Geometry %'

I

The Stratton-Chu equations can be simplified somewhat since the

environment surrounding the target can be assumed to be source free..

This may seem to be a contradiction since there must obviously be some

source of the original electromagnetic fields that are to be scattered by %

the target. This contradiction is resolved by realizing that when the RCS .',

of a target is being considered, only those fields scattered from the p

10



target in the direction of the receiver are of any concern. Certainly

there may be additional fields at the observation point P'. But, if

they are not traveling along a vector in a direction from the target, or

are not a result of the scattering of the transmitted wave from the

target, they nay be set to zero. With this simplification then, the

Stratton-Chu equations can be written without the first integral of each

equation.

E_(P) = - 4-n- j,(imCn x )P-? + C n x E_- VI V+ Cn" -)'7P ds (6) '.

-( )' = n < )V - C n x H x < 7- C nn UH71• ds (7)

Although the scattering geometry of the rough surfaces under study

do not coincide with the geometry for which the Stratton-Chu equations

were derived these equations can still be used if one simply considers

the rough surface to be a portion of a closed surface (Fig. (3)). .%

Electromagnetic fields will be present at the rough surface but will be

set to zero over the remainder of the imaginary closed surface. Setting

the fields outside of the rough surface equal to zero causes the

tangential fields over the entire closed surface to be discontinuous.

Stratton shows (23:468-470] that the discontinuity can be accounted for

by the addition of a line integral around the contour of the open

surface. With this addition the Stratton-Chu equations are given by Eqs

(8) and (9).

1Y



C))

1 I f I 7 
' 8

4 n I/i

Fig. 3. Modified Strattoni-Chu Scattering Geometry

* (P') = 4- j(/ n ""H- )W + 7t Y[] + (n " )7W ds

4 ~ ~j 4K T3 8

1 1 7; Ef d -1 (9 )
j*i 4 n -

12



These equations can be transformed into yet another form [23:469O : J

41- E_-(P') - E-- E ds- fc7 t dl]
a n a n

+ ?P x dX (10)

4-_H(P') -7- J - ? - ds- --- It di]
is[ a n an n

+ cV • x d•l

The first and last integrals of each equation come from Eqs (8) and (9)

by applying Green's theorem relating surface integrals to line

integrals. The second integral is of course the added term for the edge

scattering effects. The first integrals of Eqs (10) and (11)

Wn(P) a P ad (12)
n J W,9n (9 n

4n a(P') 1P J ds ~ ~ (13)(9 n a n

are known as the Helmholtz Integral equations. The Helmholtz equations

are exact for source free closed surfaces.

Ir3
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2. Approximations

Exact solutions to the equations of the previous section have not

been found except in very limited cases. In general, any solution to

these electromagnetic scattering equations is facilitated by the

imposition of one or more approximations. This subsection discusses

several approximations that will be made in this thesis.

V 2.1 Far Field Approximation and Plane Waves

If one only considers observation points (P's) that are very far

from the scattering surface several simplifications can be made. The

first simplification is that the incident fields at the surface may be

considered plane waves. This will be useful when the physical optics

approximation is made and the angle of incidence at each point along

/, the surface needs to be known. If the incident fields are not

considered to be planar, determining this angle of incidence becomes a

significant problem.

The incident planar electric field can be wTitten

- exp[%(Gt-k-r) [Ex+ EY+ Ez] (14)

4rt

Because the field quantity is only the real part of Eq (14), the sign of

the remaining complex exponential term is inconsequential. Since the

time dependence of the fields is henceforth going to be suppressed, the

91
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negative sign will be used. This will make the remaining term in the

exponential positive. The complex electric and magnetic fields can now

be written:

-o-o---

E_- -o exp(jk'r) ; = exp(jk'r) (15)
4 uR 4 fR

Another important result of the far field approximation is that

terms containing higher orders of 1/R may be neglected. Letting 77 be a

unit vector directed from a point on the scattering surface to the

observation point P'

R
77 -(16)R

the following approximations that will prove useful may also be

obtained [2:19].

exp(jkR,-jki'r)

o(17)

LimR...V)M 1P LimR- [W _..k]4 1P [7ikj 477 (18)

15
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(n H) 77 ;R- [ (n 'x H).

d 1P

(n Tn V)77 V, 
[( H) 177

rp2 2jk 2 2 1P19 .

n )*77= - (n x E) k1? (nxE =(0

2.2 The Physical Optics Approximation

The Stratton-Chu and Helmholtz equations are of a family called

integral equations. That is, the term on the left of each equation is

equal to the integral of some function of itself. This is easier seen by

expanding the expressions for the fields along the interior surfaces as

T (x'y'z) = iE(X~y~z) + E(x,y,z) (21)

* tto1scattered incident
Isur sur C ZtIsul-

16
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while noting that the left side of each equation is
'U,

E(x,y,z) or H_ (x,y,z)
scat•t ered 1P) scattered P

In general, integral equations of this type are not easily solved. In

fact, closed form solutions of the scattering integrals have been found

for only a few simple geometries such as spheres and infinite

cylinders (The solutions for these shapes is facilitated by the fact that

their geometries are specified by a single coordinate of an orthogonal

coordinate systems). Therefore, several approximate solution methods to

the scattering problem have been formulated. One such approximation is

called physical optics. The physical optics concept is to approximate

the fields at the surface by some function of the incident fields only.

Thus, the integral scattering equations become definite integrals.

The most common physical optics approximation is the tangent plane

approximation where the fields at each point on the surface are set

equal to that field which would be present at the point if the surface

were an infinite plane tangent to that point. "Then the incident field

at every point on the surface may be broken up into components, E- in

•7 '.'.
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EIt th 1 •

the plane of incidence, and-Ti normal to the plane of incidence. The

scattered field given by each of these incident field components is then

given by" [20:55]

: R E (23)

k Spec, R S kI ., E (24)

where kSpec is a unit vector in the specular direction of scattering

and [5:21]

Cos - - sin e.
R : (25)

2 2Cos e + Y - sin 8
L

cosO -Y sin e.
R 1 (26)

2 2 2
Y Cos e, + Y -sine

In the above equations Y is the intrinsic admittance of the reflecting

medium, e is the incident angle with respect to the surface normal, and

the propagating medium is taken to be free space.

The twagent plane approximation is valid only when the radius of

curvature at points along the surface are much greater than the

wavelength of the incident fields thus limiting the effects of the phase

shift caused by non-flat surfaces. This will not be discussed in detail 4

& 2 MiS



since there are many fine references that cover physical optics

[20:55-59], [10:119-130] and [14:454-458]. The important consequence of

this fact is that only rough surfaces with no sharp peaks or valleys

will be covered in the pursuing calculations. The Gaussian correlation

coefficient used in this thesis forces surfaces to meet this criteria as

long as the wavelength is kept small compared to a correlation length.

2.3 The Infinite Conductivity Approximation

For any surface for which z is not constant (see Fig. 2) the

normal to the surface is a function of x and y. This will make the

plane of incidence and angle of incidence a function of x and y. This

in turn complicates the determination of the local reflection

coefficients. A common practice which reduces this complication is to

___ assume that the scatterer is a perfect conductor so that the admittances
IJ

in Eqs (25) and (26) go to infinity and thus R = -1 and R = +1 . The

scattered electric and magnetic fields are then given by the

relationships

T - E (27)

.Spec xE scat. x E28

'F

I
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This results in the total fields at the surface being given by

n < E surf n E i + E s ) : 0 (29)
- nuf - sa.

n H- surf 2n x H (30)

This simplifies the problem in that the angle of incidence dependence of

the surface fields is removed. The dependence on the normal to the

surface at a given point remains.

3. Solution Ignoring Surface Slopes

In this section an equation that gives the average RCS per unit

area for a random rough surface will be developed by starting with Eqs

(8) and (9). Applying Stokes theorem to the line integrals one finds

that [2:18]:

71 d• -- = n^ H ). n E ) 7p ds (31)

c

20.
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By substituting Eqs (17), (19) and (20) into Eqs (31) and (32),
Ail"p

substituting these results into Eqs (8) and (9) one can write [2:21]

E p, , ejkR - - -Y - I -J'r_P) j , (n',H) - r/.(neH) 7?- Y (n 'E)er} e- k7 ds(33)
- ~4n R

while Eq (9) effectively becomes

- ( (-4-- e - (n ) }ejkIrds(34)471 R

where Z and Y are the intrinsic impedance and admittance of the

propagating medium. Using the infinite conductivity identity that the

tangential component of the surface electric field is zero and that

n < H = , these equations become

( ( n ,-2) - 7 " ( n -H }t e J k ' r d s ( 3 5 )

Ic a,..
_ ke -jk?7* r

- , 27T R (n-H') 77 e *r (36)

Since either the electric fields or the magnetic fields at the

observation point may be used to determine the RWS of the scattering

surface, Eq (36), being the simpler of the two, will be used.
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Recalling that I? is the unit vector originating at a pcint on the

surface and in the direction of the observation point P', the far field

condition gives that this vector will be constant over the surface of

integration. Therefore this cross product will be taken outside of the

integrand using the relationship that A B - B -A. Also, using the

rectangular coordinate system with the height of the surface above the

z=O plane be given by the random variable ((x,y), the following

identities can be written:

^ T- x -Z y + z
n x ( 37)+h

.5.•

+ r + 1 (38)

Substitution of Eqs (37) and (38) into Eq (36) results in [2:33]

ff---- e 77, (- if 3 H--i + z×_-i)J e- jk x dr

(39)

.%.'
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At this point the approximation that the slope terms are

very small will be applied reducing Eq (39) to

(P) jke e •7z r dx dy (40)
2IT R $

From Eq (15) the incident magnetic field can be written

i=i -11i jk rH :n e (41)

where the polarization and time dependence of the field are contained in

H0 and r is given by r x x + y y + ((x,y) z. The magnetic field can

then be written 12:41]

(PkR - z eJ(kkrn r dx dy (42)~. ~ 21 R 0

Restricting the derivation to the case of backscatter where k is equal

to -kn and thus ki equals -7, Eq (42) becomes

Rjk kR rk- 2jk rH_2(P') - "2 R _0 e dHx dy (43)

.'0
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By breaking k up into its x,. y , and z components and performing the

dot product one arrives at

2n R zxH-

j x + ky + ki x, y) dx dy (44)

The cross product can be easily performed for the case of

backscatter by using the triple cross product identity [22:17]

A x ( B × C ) (AC)B - (AB)C (45)

resulting in

k zxH' = (k' " ) z- C k ZJ H' (46)0- -0O--

Since H ' is orthogonal to k' the first dot product is zero. The second
-o$

dot product is simply the projection of the incident wave vector upon

the z axis. T-herefore, Eq (46) reduces to

k z H' -kz H cos(e(9 H'- (47)

and Eq (44) becomes

H(P jk - -R cos(O )Hi exp 2j rk'- + k-y + ky (x,(y)) cx dr!48)
2R R _o0 x 2

U..'
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Equation (48) is easily checked for validity by setting the

random surface height variable equal to zero. With this substitution,

the surface slopes are exactly zero and so Eq (48) should give the

physical optics solution for a flat plate. Direct integration of Eq .

(48) with ((x,y)=0 and the application of the RCS formula given by

4 7R 2< I_ P I>1 2

<RCS> = (49)

results in the RCS being

k 2 2 2 2 2 2
- cos (e) L L sinc (k L ) sinc (k L ) (50)S x y y y X x

Irv Equation (50) is the physical optics solution for the RCS of an

infinitely conducting flat plate with sides L and L [10:121].
x y

The next step then is to take the average of Eq (48) with respect

to the random variable O(x,y).

jkR"

( >- 2 cos(9.)Hi exp 2J k x +kyki <eex-p(2jk )> dx dy2nl R I J0i
S(51)

The solution above gives the expected value of Hi(P'). This value is P

relatively meaningless for very rough surfaces because the magnetic

field is a complex quantity. The large variations in phase caused by the

rough surface will cause the phase of this term to vary wildly. Therefore
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<H(P')> gives little information about <IH(P')I> which is the contributor

in incoherent measurement systems. To clarify this a simple example

will be given.

The expected value of a complex number is written as

<9(P')> = <Re H_(P')> + j<Im _H(P')

Table I shows what misleading things can happen in the extreme

case of 180e phase variation

TABLE I

Comparison of the Average of a Complex Quantity

with the Average of its Magnitude

SRe H-(P') Im H-(P') <Re H(P' )> <IM H(P' )> < IF(P' )>

- 0 0 -k

-1 1

With this in mind, its obvious that in order to find the average RCS of

the surface, Eq (49) one must solve for <IH(P'I> 2I

-tZ4
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The expected magnitude of the magnetic field at P', < H (P' can

"be written <H(P')H(P') >. Iultiplying Eq (51) by it's complex

conjugate results in

k2 2

H(P' )H(P' ) 47kcos 2 Ri i2

X exp 2jCk x + klvy exp(2jkz) dx dy

X fex-p Pi CIkix'+ ki'Y'J] exp(-2.jk 1 ') (52)

(52)

By combining the two integrals and taking the average with respect to

the random surface heights, the expected value of the magnitude of the

rscattered magnetic field can be written

4~44

k2 2 o4.

<H(P')H(P') > = 4cos (7 2 ) R

,r , i. .4~,lcxd.xa:

2 expI2 k (x-x' + kI (Y-Y1,) <ex-p(2.jkz -"')))dxddx'dy'
J 4 Js 4  y

(53) v

•.,

4"'

,",

" ~27

" '2-~
J_ ~,'J÷~de~c-.ec• ...4..-.-.•c/ .. ;-•••J¢` 4 -` •N; '•'."',•;".",,.X;,-.'J'.-



At this time a substitution will be made for the sake of shorthand

and also to match more closely the notation of the common literature on

this subject [51, (201and (16]. The following parameters are defined

and simplified for the case of backscatter

v = 2k' = k sin(e.)-sin(e( )cos(O )J = 2k sin(e) (54)

v = 2kl kE-sin(e. )sin(1 )J = 0 (55)y y I S

V 2k k(-cos(e )+cos(e.) = -2k cos(0) (56)

With this notation Eq (53) becomes p

2 2
2 k cos (e) i 1 2

<>2 2 -4n2 R

Lx/2 Ly/2

J J } J expL[j v x(x-x,)+vY(Y~-Y, JJexp(jv (¶,ý)> dx dy dxc1y'

-Lx/2 -Ly/2

I..(57)

Here v has been left in for the time being although it is equal to
y

zero for the case of backscatter. The inclusion of the limits of

integration indicate that each surface integral is to be integrated over

a rectangle that is Lx by Ly. It will be seen later that the shape and
I

size of the surface is inconsequential so long as it is many correlation ,

lengths in the x and y directions.

28I..
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The averaged term within the integrand, <ex-p(jv V(-('))>, is by

definition the joint characteristic function of the pdf evaluated for v

and -v [7:428] and will be denoted by t(v ,-v z;r). It is the two

dimensional fourier transform of the joint pdf and is a function of the

correlation coefficient which is itself a function of the distance

between the two points (x,y) and (x' ,y') given by r.

Barrick (2:45-48] shows the steps necessary to make a total

transformation of Eq (57) into a polar coordinate integral that can be

integrated over the characteristic function. First, define the distance-

between points as

2 2 %d'Z
rx= (x-x') r,= (y-y') and r = sqrt( r + r ) (58)x y

Then

Lx/2 Ly/2 Lx/2-x' Ly/2-y'

<1--(P )I> 2 k cos 2  ITTo i F r
2 2 I 0

-Lx/2 -y/2 Lx/2-x' -Ly/2-v' %"

exp .j iv r +v r))' i(vz,-v ;r) dr dr dax'dy' (59)

The polar coordinate r has already been defined as sqrt(r + r ) so

all that remains is to define ' and the limits of integration. Since a

".5•
%".P
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neither of the data points (x,y) or (x',y') are as yet fixed, the easiest

way to define 0 is as Barrick did [7:79]:

x-x' r cos(0) and y-y'= r sin(O) (60)

This definition is especially facilitating since the left hand terms

appear in the integrand. Transforming the limits of integration is not

so trivial a task but is facilitated by the fact that for very rough

surfaces, the joint characteristic function goes to zero monotonically

within only a few surface correlation lengths. Reserving the

definitions of "very rough" and "a few correlation lengths" until the

analysis section where these terms are examined more closely, suffice it

to say that this allows the finite surface to be expanded into an

infinite surface without affecting the value of the integral.

Then

Lx/2 Ly/2

<lI(P'I> - k cos (e) T 2•• I d[ ' a•'
47, 2 R2 J J

-Lx/2 -Ly/2

JJ exp[ (vxr cos(O)+v r sin(O))] JJ v -vz;r) dr de (61)

yI

oo 0
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The first integration is trivial resulting in

2 2

4n R2

Jf exp(j Vxr cos(O)+v r sin(0)J] ;"(v ,-vz;r) drdO (62)

Before proceeding the difference between coherent and diffuse

scattering must be understood. Coherent scattering is that portion of

the scattered field that follows the same pattern as would the scattered

field if the surface were not rough. For the rectangular surfaces under

consideration here, the coherent pattern is that given by Eq (50). As

SI the surface gets progressively rougher, diffuse scattering will become

more dominant. The diffuse scattering is the random scattering pattern

that tends to fill in the nulls of the coherent pattern and reduce the *4%

power in the coherent lobes. A very rough surface is one which has

only diffusely scattered power.

If a surface is not very rough and has a coherent component

remaining in the scattered field, the expansion of the surface to

infinite dimensions will cause the RCS to also go to infinity. This

problem can be avoided if one subtracts out the coherent part of the

power within the integration. The coherent power can be eliminated by

subtracting < _H >< H > from the <H H >. This is equivalent to

subtracting the square of the one dimensional characteristic function %
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p

from the joint (two dimensional) characteristic function. With this

modification and integrating over * as shown by Beckmann [5:181-1841

2 22

< IHf(P)I >2.k cos U) L L If12 rJo(r4v +v )[It- 2 ]dr (62)
2n R o

where t2= t(,-v ;r) and = I (v") is the characteristic function of

the one dimensional marginal distribution which goes to zero as the

surface gets rougher and v increases. This is easily converted to a

radar cross section per unit area by dividing by the area of the surface

and employing Eq(49). I

<RCS> 2k2 Cos 2 (e) rJ(r v 2+v dr (64)
J x Y 2

0

Recall that the above Eqs (63) and (64) give only the diffusely

scattered is power and are only valid for surfaces where the surface

slopes can be ignored.
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4. Beckmann's Solution

Beckmann starts with the Helmholtz integral equation for the

electric field given by Eq (12) and repeated here [5:19]:

-- ~I 1 " ^d0• cs (65)
E(P') - 49 1 - nn J

Obviously, Beckmann has ignored the line integrals introduced by the

fact that the scatterer is not a closed surface . But, as stated by

Barrick states, these terms are small and proportional to sin(e) [2:14].

Therefore, Beckmann's solution should not suffer from this deficiency

at near normal incidence. As the angle of incidence increases, the

shadowing function, s(e), begins to dominate the solution, again making

the line integral terms inconsequential (see Reif [19)).

Continuing with the Beckmnann's derivation, the normal derivative of

any quantity is given by the relationship [22:62]

7 = • n (66)ýn

Using the 7w given by Eq (20) and the scalar quantities for the

electric fields Beckmann gives the following physical optics

"4.5
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relationships for the fields at the surface [5:20]

IEI = (:+R)E (67)
a,.

= (1-R)E(jki" n) (68)

nN

where the R's are the Fresnel reflection coefficients. Substitution of

these quantities into the Helmholtz equation results in

E(P) j [(l+R)R(-ji"P - IP(1-R) (jki)] n ds (69)

""4

which in turn can be reduced to

EIP 2 =E eJkR ^ .-

E(P) f ec[(2R)(Tk'n)ex-p(2jk • Fr)]ds (70)

in the case of backscatter where Ks= _.

Beckmann does not state such, but Eqs (67) and (68) hold only for E

where I=-I. For E where R:+1, the field at the surface is not double the

incident field as indicated by Eq (67) nor is the normal derivative of the

field equal to zero as indicated by Eq (68). The equations only hold for

the portion of E that is normal to the surface. For that portion of the

U'ield that is parallel to the surface, the equations hold with R set to

-1. Fortunately, when the scalar terms are added as they are in

Fq (69), the result is still Eq (70).

- 4.
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Jed Continuing with Beckmann's derivation, Eq (68) is substituted into

Eq (70) for the surface normal vector and Eq (38) is substituted in for

the differential surface. Also, the magnitude of the Fresnel reflection

coefficient is replaced with unity for the case of perfect conductivity

yielding

SjkR x y )exp(2jk'SEi ~~~~j ejk, ^^_•
x-- _ Ry + z • r) dxdy (71)

Instead of simply dropping the slope terms in Eq (71) Beckmann

removes them by employing integration by parts legitimately. Expanding

the integral portion of Eq (80) it can be written as

I (-k - k Y + k.) expU(2j)(kx + kYy + k,()] dxyy (72)I - -' k y y)Jdxy 72

For the case of backscatter where k 0= , Eq (72) can be written as the

sum of two integrals

* p'
I :j(-k <:) exp[(2j)(k x + kM)1 dxdy

+ Jf(k) exp[(2j)(kx + k )] dxdy (73)
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Upon integrating the first integral by parts one gets

Lx/2.

J ( 2jkx ) exp[(2j)(k x + kZ )]dy2jk zx z - Lx/2

+ J x exp[(2,)(kxx + k<)] dxdy

+ J(k) exp[(2j)(kxx + kz dxdy (74)

Beckmann shows that the first integral represents an edge term and is %

negligible [5:31]. Summuing the second and third integrals one gets

2S

k x4

= k) exp[lj)(kx + k dxdy (75)JJ ( + ex

Since k ksin(e) and k = kcos(e), the terms can be summed to yield

22 2kk2  k k k
k + k) x + (76)c(k z - (-z- -k.-- os ej ele

Thus

E(P) jkE e sec(&) i exp[(2j)(k x+kC)] dxdy (77)2nR J1 x z

Equations (77) and Eq (48) are practically identical in form except the

cos(e) term in Eq (48) is replaced by a sec(O) term and the magnetic field
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is replaced by the electric field in Eq (77). Therefore, the same

procedures can be used to transform Eq (77) as were used to transform

Eq (48) into Eq (64) and the final result for the average RCS per unit

area is

<RCS> 2k 2sec2 () rJ) dr (78)

0,N

This result is the same as that of Beckmnann [5:79] with the exception

that Beckmann's result is in terms of average reflectance. Becklnann's

solution is also true for the more general case of three dimensional

bistatic scattering [5:720]. Transforming Beckmann's three dimensional

bistatic scattering with finite conductivity solution into RCS units one ,5'

gets b

<RCS> K3J1 2k0 r J (r -Fv +v 1' [ ~ 2U dr (179)

0

whereI'hv is a polarization scattering matrix whose elements are given

in reference [5]. For the case of backscatter and infinite

2 29
conductivity, 13j1 reduces to sec (0).

hv,
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5. Summaryv

In this section two equations were derived to give the average

diffuse RCS per unit area from a random rough surface. The first

solution , Eq (64), was found by making the assumption that the surface

slopes were essentially zero. The second solution, Eq (78), was

facilitated by the fact that the contour integrals around the outer edge

of the surface were set to zero. In comparing the Eqs (64) and (78) it

is clear that the only difference between them is that Eq (64) has a

cosine term where Eq (78) has a secant term. Thus at incident angles

very close to zero, these two solutions will give the same results. As

will be seen in the next section, the diffuse backscatter from surfaces

with small surface slopes is concentrated within small angles of

incidence and thus Eqs (64) and (78) will give essentially the same

results. As the slopes of the surfaces increase, the diffuse power is

backscatter is present over a larger range of incident angles where Eqs

(64) and (78) do not give the same results. Since Eq (78) is valid for

these rougher surfaces as well as for the surfaces with small surface

slopes, it will be the solution used throughout the remainder of this

thesis.

:38

N
N F * *FF -''...



III. ANALYSIS

This chapter is devoted to numerical computations and

interpretation of the results. The sections in this chapter consist of

Part A:

1) A comparison of the three pdf's presented in

Chapter I with respect to their ability to represent

rough surfaces.

2) The calculation of the average RCS per unit area from a

surface repl-esented by the exponential pdf (Eq (3)) along

with a comparison of these results to those for the Gaussian

pdf and for the exponential-like pdf.

Part B:

3) The computer generation of surfaces meeting various

statistics.

4) The computed average RCS for the computer generated surfaces.

Part A

1. Three PDF's

In this section the three pdf's presented in Chapter I will be

analyzed with respect to their ability to represent rough surfaces. As

stated in Chapter I, two of the probability density functions, the

Gaussian and the exponential-type, have been used in the past by
3%

S.
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workers studying the electromagnetic scattering from rough surfaces. Of

these two pdf's, it will be shown that only the Gaussian pdf can

reasonably be expected to represent a realizable rough surface.

This author, along with others [4] defines a realizable

rough surface as one for which decorrelation of the surface height

random variables implies statistical independence. Some may argue that

simply because the variables do not become independent does not infer

that either variable influences the other in a manner which precludes

the use of the pdf from representing logical surfaces. Rather than

contest this argument the exact influence of one variable over the other

will be examined using conditional probabilities. Since the bivariate

Gaussian pdf is a well documented density which decorrelates into two

statistically independent monovariate Gaussian pdf's, it will be looked

at first and used as the basis of comparison.

1.1 The Joint Gaussian pdf

There are several ways of determining the statistical independence

of random variables in a multivariate pdf. A sufficient condition given

by Davenport is that when the correlation coefficient is equal to

zero, the joint distribution can be written as a product of the marginal

distributions [7:167]. Integrating the joint Gaussian pdf with respect

to ( it is found that the marginal distribution on 2 is
1 2

2

p (21 - exp 2 (80)4-2r h 2h2
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Since the joint distribution is symmetric, L can be substituted for C

in the above equation to get the marginal distribution on t . Setting p

equal to zero in Eq (1)

G ;0) = pG ( ) pG ( 2 (81)

thus establishing the fact that decorrelation implies statistical

independence given the joint Gaussian pdf.

Figure 4 illustrates the effect of the correlation coefficient

upon the joint Gaussian pdf. With P set to zero , Fig. 4a, one

simply gets the syTmnetric Gaussian curve which states that the

probability of ( = z1 and ( = z2 is dependent only upon the magnitude of
2 2

(z + z 2 ). When the points are closer together there is a dependence

between ( and C2 such that the chance of z being equal to z, is

increased while the probability that z will differ significantly from z%

is decreased. This trend is shown in Figs. 4b and 4c where P is

equal to .5 and .95 respectively. With p=.95 it is seen that the

probability that z z is very high as it should be since the points are

very close to each other. When P=1 the joint density function becomes

6( -<2 ) p (4 ) (82)

indicating that the two random variables represent the same point [4].

Another way to state statistical independence in the context of

surface height random variables is to say that the probability of a

point (x,y) being at height z is totally independent of the height of a

41
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(-3,-3);. .

(0,0,. 184) ••
Fig. 4a. Joint Gaussian pdf with P=0 -O

p

%'I

3(333) (000,,.18)

(-3,-3) .

Fig. 4b. Joint Gaussian pdf with L=.5P.

(3,3)

N I

Fig. 4c. Joint Gaussian pdf hh P=195
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point at (x',y') as long as the two points are separated by a great

distance. Using the definition of conditional probability [7:160]

h

PI( •t'• ;p)

p(W I 2;P) = ''' £ 2 (83)

where p(( IJ() gives the probability of C based on a given C and P, a -

1 2 12

necessary condition for statistical independence can then be written as

p(•i<2;p)= p(Y) (84)

Substituting the joint and marginal Gaussian pdf's into Eq (83) gives

the conditional Gaussian density function

2-P -1

p exp (85)

2n(1-p2) 2( 1-P

which is graphed out in Fig. 5 for the same values of P as was the

joint pdf.

With p=0 the relationship of Eq (85) is illustrated that the

probability of is not a function of <2" With P=.5 the center of the

curve tends towards the < = 2 line (it is actually at the ( 1 .5(2

line) while the variance of the curve decreases. With P=.95 knowledge

4-3

de



(-3,-3)

Fig. 5a. Conditional Gaussian pdf, P=O

(3,3)

(0,0,1.28

((-3,-3)

FiFig 5b. Conditional Gaussian pJdf, 0=.9
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of almost completely determines as the trend towards

PG (ý11R 2 ;P) : -( (86)

becomes apparent.

1.2 Exponential-Type df

Having established some of the desired features in a joint pdf it

is time to examine the exponential-type pdf Eq (2) which has been

used by many as an alternate to the joint Gaussian pdf for rough surface
..4

representation. Figure 6 graphs the exponential-type pdf for

P=O, .5 and .95. There are many similarities between these graphs and

the corresponding graphs for the joint Gaussian pdf. It is these

similarities that may have lead others to use this pdf as a rough surface

model. What is not readily apparent from these graphs is that

the joint exponential-type density function is not equal to the product

of its marginals at P=0 and and thus the decorrelated random variables

are not statistically independent.

The fact that the exponential-type jpdf is not equal to the product

of its marginals at P=0 is easily verified by checking at the point

IC2 =0. The marginal pdf as derived by Papa and Lennon [15:591 is

P (i h2 < KI ýF" (1z (87)

N n h

where K is a first order modified Bessel function. Setting h=1 andi

using the value of xK (x)=l for \=0 from [1:379] one gets

.15
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(0,0, .64)

Fig. 6a. Joint Ex\po-t.,ype pdf, P=0

p 1%

* (0,0,4.9)

(-3,-3))

Fig.ig 6c. Joint Expo-typee pd, P=.9
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p (RO=0) - thus r ) 2 (88)

which does not equal 3/1(2), the value of the jpdf evaluated at zero.

The more critical question of the relationship between ( and L2 is
IJ

answered in Fig. 7 which graphs the conditional hdf's for the

exponential-type jpdf at the different values of P. The fact that all

of the graphs show a spreading of the conditional density function on

as 1•1 gets large is a curiosity but does not prohibit the jpdf from

representing rough surfaces. The fact that the conditional density

function at P=O shows that the density on is a strong function of ( 2

does prohibit its use.

The exponential-type conditional pdf at P=O is odd indeed for a pd:f

that is to represent rough surfaces. The increase in the variance of C

as IC21 increases indicates that if the height C(x,y) is very

high, the probability that the height at a point (x' ,y') which is very

far from point (x,y) is modified so that very large positive and

negative heights become more probable at the point (x',y'). Meanwhile,

heights around the mean become less probable. The same behavior is

observed if the height at point (x,y) is very large and negative.

Although this author can offer no mathematical proof as to why this is

impossible for physical surfaces, it seems that this is the only logical

conclusion.
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Fig. 7a. Conditional Expo-type pdf, P:= O
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Fig. 7b. Conditional Expo-type pdf, P=.5
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Fig. 7 c. Conditional Expo-type pdf, 0=.95
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1.3 True Exponential pdf

The final jpdf to be evaluated is the exponential pdf introduced by

Pyati , Eq (3), and it is pictured in Fig. 8. A noticeable distinction

of this pdf is that it does not have the circular synmmetry at p=0. This

is simply because at P=0 the exponential JPDF reduces to the product of

its marginals

f 2 - exp -- - "2 (89)

4h h

which has constant probability along the II( II121= C lines, where C is
.2 2

any constant instead of the 2+ (2= C lines as did the previous two pdf's.

The same trend as seen in the other pdf's as P approaches one is

apparent in Figs. 8b and 8c. Figure 8c is perhaps not as clean as

it should be based on the fact that as P approaches 1, a large number of

the higher ordered modified bessel functions are needed to calculate

accurate data points for the exponential pdf. Since each of these

modified bessel functions is represented by a truncated infinite series

in the computer program that calculated the surface graphs, increased

error is present as more terms are needed. The trend, however, is -U

obvious and the fact that this series tends to

fE ; ) ( " ) f£ "'U-

f ( ;1)= 1(( - ) f %(
1 2 1 2 2

= (~--)-ex (90)
1 2

42h 2

as P - 1 is verified when the characteristic function of Eq (3) is shown "

to be equal to 1 at P I (see Fig. 12).
J*6
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Fig. 8a. Joint Fx\ponential pdf, P=O "
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Fig. 8c. Joint Ex-ponential pdf, Po.95
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The graphs of the conditional probability of ý1 given <2 and p

(Fig. 9) show the necessary condition that when P=0 the probability of

is independent of (2 The above stated relationships as P increases

are evident in Figs. 9b and 9c within the limits of the numerical

inaccuracy stated in the previous paragraph.

In summary, it has been shown that the true exponential JPDF

satisfies the condition of decorrelating into statistically independent

pdf's while the exponential-type pdf has been shown to be inappropriate

for representing rough surfaces.

%

% V
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12. RCS's Using Specifi Density Functions

In this section the steps required to calculate the average diffuse

RCS's per unit area are presented for all three jpdf's. Henceforth the

fact that only the diffusely scattered power is being considered will be

assumed unless otherwise stated.

2.1 The Characteristic Functions

To calculate the average RCS per unit area of a rough surface given

a specific pdf, one must first calculate the characteristic functions of

the joint pdf and the one dimensional marginal pdf's. The joint

characteristic function of a bivariate pdf is given by [7:428]

:r2 (vIv 2 ) 2 <exp(jvt< + jv 2C 2)> (91)

Making the backscatter substitution that v2 = -v -v this becomes

2(V z'-v ) = <exp(jv - jv z 2 (92)
z z Jzit Oz<2

which, for convenience, will henceforth be referred to simply as the

joint characteristic function without, reference to the particular

arguments. The one dimensional characteristic functions are given by

S(v) <ex-p(jv < )> and v (v) : (-v ) <exp(-jv z )> (93)I ~z Jz I z z z

Before investigating the characteristic functions of specific pdf's

several properties of the characteristic function should be not"J. The
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V, first involves the case where the two random variables of a joint pdf

become completely correlated. In this case • approaches the value of

< and thus Eq.(92) simply approaches the expected value of unity. The

second case considered is when the two random variable become

completely decorrelated. If the random variables become statistically

independent while decorrelated the following relationship holds true

Lim,,. 1. (v,,-v) = <ex-p(jvz• )><ex-p(-jv • )) = ?(vz)t (vz) (94)

If the density functions are symmetric about zero, all of the pdf's in

this thesis are, then

T (v z)X (v ) = ,t (v ) (95. z I z I z ?',

4-, I

2.1.1 Gaussian and Exponential-ty-pe pdf's

The characteristic equation for the bivariate and monovariate

Gaussian pdf's are quite easy to derive and can be found in practically

any text book that covers characteristic functions [6:99]

2 2
h vS= and '= exp[- z ] (96)z i 2Z

541
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The characteristic functions of the exponential-type pdf were derived by

Papa and Lennon and are given as [15:591

ET 1 + 22 (-P) (97)2
23

ET 2 2h9-3/2'

j 3 zj . y h2.(8

Graphs of the one and two dimensional characteristic functions for the

Gaussian and ex-ponential-type pdf's are shown in Figs. 10 and 11

respectively. The fact that the exponential-type does not split

into statistically independent random variables is obvious from the fact

that the two dimensional characteristic function does not approach the

value of the one dimensional squared in Fig. 11. 0

%

%.
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Fig. 10a. Gaussian Joint CF and ýzas a Function

of Correlation Lengths with h*v 2
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Fig. 10b. Gaussian Joint CF and r2as a Function

of Correlation Lengths with h*v -

56 -..



\ 1 Expo-type Joint CF

""/Expo-type Merginel CF 2

.4.

.25

. 1.52

Correlation Lengths .,

2 -5
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.8.'t

Expo-type Marginal CF ;
.2SII // 'I

.511.52
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XA 2.1.2 True Exponential pdf

The one dimensional characteristic function for the true

exponential is easily calculated to be

E 1 (99)
I +h 2 v 2

z

Unfortunately, the two dimensional characteristic function is neither as

easy to find nor is its final form quite as compact. Because its

derivation is lengthy it has been provided in a separate appendix,

Appendix A. The solution, arrived at in collaboration with Reif [19]

and with the assistance of thesis advisors Pyati and Baker, is given by

Eq (A-37) which contains two infinite series.

Obviously, one would prefer to have the solution given in closed

form. Appendix B, also derived with those named above, gives a closed

form solution for the first series of the total solution. The geometric " -

series identity used to get a closed form solution for the first series

cannot be applied to the second series. The most that could be done

with the second infinite series was to approximate it by a finite series

and a remainder term. This approximation can be found in Appendix C.

Figure 12 was generated by incorporating the contents of Appendixes

A through C into the program MAIN2.BAS (see Appendix D) which

calculates values of the two dimensional characteristic function. All

three characteristic functions are shown together in Fig. 13 using the
.5..

value hv 1 10.
z

No.
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2.2 Performing the Final Integration

Having computed the characteristic functions for the pdf's all that

remains is to perform the integration of Eq (78). Closed form solutions

to Eq (78) have been found in the past for the Gaussian and

ex-ponential-type pdf's where the surface is assumed to be very rough

using the method of stationary phase. Very rough in this case means

that the square of the one dimensional characteristic function is

essentially zero and the power is diffusely scattered. From reviewing

Figs. 10 through 13, this means that the product h*v should be at leastz

5 for the Gaussian pdf and somewhat larger than 5 for the

exponential-type pdf. By assuming this condition, the square of the one

dimensional characteristic function need not be subtracted from the two

dimensional characteristic function thus making the stationary phase

integration much easier. Under this condition, the diffuse scattering

contribution to the average RCS per unit area of a surface represented

by the joint Gaussian pdf is given by [20:724]

G sec (e)1 2 1
- 2 exp - tan (e) (100)

s

2.2

where s is the mean squared surface slope given by 4h /'2 . • being the

correlation length of the surface. (A more detailed ex-planation of the

mean squared surface slope term can be found in Reif [19]).
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For the ex-ponential-type pdf, the diffuse power contribution to the

average RCS is given by [20:725]

(CET 3sec C~ 16
D- 2 exp - 2 tan(O) (101)

s s ."

It should be noted that Eqs (100) and (101) are valid only for very

large values of h*v since the method of stationary phase (a high

frequency asymptotic technique) was used to perform the integrations.

This masks the problems associated with the ekxponential-type jpdf. The %

associated graphs of Eqs (100) and (101) are given in Figs. 14 and 15

respectively.

A better physical understanding of Figs. 14 and 15 can be

obtained from considering a few ray optics argmnents. As a plane wave

impinges normal to the mean of a randomly rough surface, the rays will

be scattered in random directions (diffusely). The rays scattered in

any •iven dir-ection can be attributed to scattering from the specular

points for that direction. Increasing the roughness of the surface by

increasing h does not change the number or position of the specular

points. It does, how.'ever, decrease the principle radii of curvature

fR and R ) of those points. Since the RCS of an object using specular
2

Spnt theory is given by RCS :R R [10:"119] this obviously will
1 2

decrease the average RCS of the surface. The rougher the surface is,

the smaller the radii of curvature these specular points will have.

Therefore, an increase in roughness reduces the normal backscatter.
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Fig. 15. <RCS>/Area for an Exponential-type Surface as a Function

of Incident Angle with 5 deg Mlean Surface Slope Steps
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As the angle of incidence is increased, the number of specular

points is decreased. If the surface is only slightly rough, it is

highly unlikely that there will be specular points for angles of

incidence other than those near zero. The rougher the surface, the more

likely it is that there will be specular points at higher angles of

incidence. (It should also be remembered that the rougher the e

surface is, the greater will be the effects of shadowing which is not

accounted for in these figures.) For more on the specular theory of

rough surface scattering one can refer to [4], Reif [19] is a good

source for the shadowing theory.
F

Before taking on the task of performing the numerical integration

of Eq (78) with data points of the exponential characteristic functions,

the behavior of the elements of the integrand should be analyzed with '

respect to their possible effects on the integration. Keeping in mind

what must be done in a numerical integration, it is seen that to
4.

reproduce solutions such as those in Figs. 14 and 15, one must

successively solve the integral for discrete values of the mean surface

slope and at discrete angles of incidence. The variables that change as

Sthese parameters change are h, v and w%-hile the correlation length,

•, is kept constant. (The correlation length is set to I throughout

this thesis.) Tho of these variables, h and v are arguments of the
z

characteristic functions. Because of the length of time it takes to

calculate diata points for the exponential characteristic function ( To

generate the 5001 dlata points that were eventually used in the

integration it took 56 hours.) one must find a way of using only one set

Of data points from the characteristic function and scaling the other
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parameters accordingly. Fortunately, h and v only appear as the

4• dimensionless parameter h*v within the characteristic function.
z

Therefore, the goal can be accomplished by letting h*v equal somez

constant. V
To keep hov constant for any given mean surface slope as the anglez

of incidence changes, the following must hold:

h*v = 2k cos(e) = C (102)
z

c
kcos() (103)

where C is the yet to be determined constant. Fortunately, as can be

seen by reviewing Eqs (100) and (101), the <RCS>D is not a function of k

as long as k is large enough so that the one dimensional characteristic p

functions can be ignored. From Fig. 13 it would appear that letting

C = 10 is sufficiently large, therefore 10 will be the value used. The

use of C = 10 as a high enough number will also be confirmed by the

accuracy with which the numerical integration of the <RCS> integral

reproduces the stationary phase result for the Gaussian surface.

It is seen from Eq (103) that as the angle of incidence increases,

the value of k to be used in the integration increases. This causes the.

constant portion of the Bessel function argument in Eq (78) to be

increased. This in turn increases the frequency of the Bessel function.

Figure 16 illustrates this relationship. The fact that it is the

increased cancellation between the positive and negative porti,)ns of the

66 '.
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high frequency Bessel function that cause the RCS to go to zero

""' emphasizes the necessity to use enough data points in the integration.

When the angle of incidence is held constant and the mean surface slope N

is increased, the result is a decrease in the wave number. The effects 'A

of this relationship are shown in Fig. 17.

Since the characteristic functions for the Gaussian and exponential

pdf's are not dramatically different, one might assume that the same

number of data points required to integrate Eq (78) using the Gaussian

CF would be adequate to integrate the exponential. By incrementally

increasing the number of data points used to do such an integration, it

was found that with h*v = 10 that 5001 data points evenly spaced
Z

from 0 to 1 correlation length ( that is, .0002 correlation lengths

apart ) produced adequate results. These results are shown in Fig. 18.

Overlaying this graph and the graph of the stationary phase solution of 0

the integral, it is found that the values are exactly correct until they

get down into the -20 dBsm region where they obviously deviate from the

stationary phase solution.
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Creating the 5001 data points for the integration proved

to be no trivial task. As stated earlier, every attempt was made to

minimize the number of calculations required to produce this exponential

CF data (see Appendixes A-C). Finally, the program MAIN2.BAS was

written to crunch the numbers. It was soon realized that running this

program on the basic IBM PC, even in compiled TurboBASIC, would place

the run time of the program dangerously close to the mean time between

failures of the computer. The computer was therefore enhanced with a

faster CPU and a numerical coprocessor. This increased the speed of the

calculations by a factor of 8 allowing the data file to be built in only

56 hours of continuous run time. After completing the data file,

program RCS2.BAS was run to perform the integration using a Simpson's
5•,

integration scheme. The results of these integrations were then

mult'iplied by sec2 (&) to produce Fig. 19.

Figure 19 gives the average RCS per unit area of a very rough'-'

surface represented by the true exponential pdf. It is interesting to

note that it does indeed resemble the graph of the exponential-type

results in shape. This is the only similarity though, as overlaying the

graphs clearly shows that the values are not the same. The RCS of the

true exponential surface is lower at normal incidence and falls off much

slower than that of either the ex-ponential-like or Gaussian surfaces..

This indicates that the true exponential surface is a rougher surface

given the same surface height variance (h 2). In the next section,

computer generated surfaces will show this to be true but for now this

argxrnent will be supported by simply looking at a comparison of the

71i f'
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3. Summary

In this section some of the properties of the Gaussian,

ex-ponential-type and the exponential joint probability density functions

were investigated along with some of the related properties of their

characteristic functions. It was shown that upon decorrelation the

Gaussian and exponential random variables become statistically %

independent. It was also shown that the exponential-type jpdf lacks

this property and is therefore not suitable as a rough surface model.

In support of the <RCS> results found for the different jpdf

surface representations one can refer to Figures 4, 6 and 8 all of which

were generated with the variance set equal to one. Although the scale

of the graphs are all different (this was done to maintain constant size

for the graphs) it is obvious that the exponential-like and the Gaussian

pdf's go to zero much faster than does the exponential. This indicates

that the ex-ponential surface will have higher peaks on its surface than

will the other surfaces. This in turn will give the exponential

surfaces smaller specular points distributed over a larger range of

angles. Referring back to the specular point argruments for the way the

RCS of a rough surface acts, this supports the findings presented in

Figs. 14, 15 and 19.
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Part B

Part A of this section dealt with mathematically predicting the

average diffuse RCS of a surface given that the surface was represented

by specific probability density functions. The only way to check such

calculations would seem to be to check them against RCS measurements

made on real surfaces that obey such statistics. Most surfaces in

nature, however, have many different degrees and types of roughness

superimposed upon one another. Therefore, surfaces that conform to a

single statistical representation are not easily found. (Two references

that address this topic are [13] and [18].) An alternative given in

this section to real RCS measurements is computer predicted RCS's of

computer generated rough surfaces that meet the proper statistics.

In this section, random rough surfaces that obey Gaussian and .,

exp)onential statistics will be generated by computer. The RCS of these

surfaces will then be calculated for different combinations of mean

surface slopes and h*v These results will then be graphed and

compared with the predicted results from Part A.

1. The Generation of Random Rough Surfaces (Background) ,

SC

The technique for producing random rough surfaces is borrowed from

1Harnly and Jensen [9] where it was used to create spatially correlated

infrared noise. Harnly and Jensen, developed this technique under the

guidance of AFIT faculty member Dr. Peter Maybeck. The only

modification to the technique is one of interpretation. That is,

instead of creating spatially correlated noise, one is now finding

spatially correlated surface heights.

J-%
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L Spatially correlated surface heights can be generated from a vector

of uncorrelated surface heights from the equation

-i
Z(t.) RW(t) (104)

where Z(t. ) is a vector of dimension N2 , each element of which

represents the surface height at an individual point of a grid numbered

as in Fig (20). 0

1 .................. 2 . ......... 3 . ......... 4 .................... N

(N + 1 ) --- (N + 2 ) .............. ..................... ... ....................................... 2 N

(2N+1) ........................ ............................. 3N

( 3 N + 1 ) ......... ........................ ......................... ............................................

N(N-1)

N ( N - 1 ) + 1 ......................................................................................................... N 2

Fig. 20. Grid for Computer Generated Surfaces

W(t ) is an 4N2 dimensional vector of uncorrelated surface heights and

¢4R is the Cholesky square root of the correlation matrix. The

suirface heights of two points within the above grid iwill become

statistically independent as the correlation coefficient between the two

points goes to zero.

S.
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2 2
The correlation matrix is simply an N x N matrix, each element of

which represents the correlation coefficient between a point (j) and a

point (k) where (j) and (k) index from 1 to N2 [7:366]. The correlation

matrix is given by

1 p1 ,2  P1,3 P1.4 p.. 2 .

P2.1 P 2.3 ..... ..... P2. N 2

R : P3, P3, ..... ..... 05
p3 .1  p3,2  1(105)

P4, . . . .. ...... ..... ..... % . .

.2 P 2 P 2 ..... ....
N .1 N ,2 N .31

For the purposes of this thesis, a Gaussian correlation coefficient is

used. Therefore

P = ex-p (-d. / (106) -

where d. is the distance between points j and k. Obviously, it then
jk

follows that P.= I and P = Also, as the distance betweenfollowsi jhtP~ , k Pk,j'

two points gets large, the correlation coefficient will go to zero and

the points will be statistically independent. The extreme example of

this would be a grid for which even the adjacent points were very far

apart. Under this condition the correlation matrix would simply be the

identity matrix which has off diagonal terms of zero and diagonal terms

equal to one. In such a case Eq (104) simply gives Z(t )=W(t ).
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The elements of the Cholesky square root matrix are generated

sequentially, row by row, from the recursion: for i=1,2,....N2 compute

[12:371]

1 [Ji,1 1
p- -- aj Ij 1,2,3,...,i-i (107)

a k I a(

a ij P a 2 1 8

4 ii L ik (108)
kaI

0 j > i (109)

where the a's are the elements of the Cholesky square root matrix and the

P's are the correlation matrix elements.

As stated, the vector W(t.) is simply N2 uncorrelated surface

heights produced by any valid one dimensional pdf. This is extremely

convenient since one dimensional pdf's are easy to come by. Surfaces

can then be generated which follow Gaussian statistics, exponential

statistics or even uniform or Raleigh statistics if one so desired.

The program that will be used to calculate the RCS of the generated

surfaces is written in Fortran and resides on a \AX-1l/785 which is

owned by AEWqAL. Therefore, the programs that generate the surfaces were

written in Fortran on the same computer. The following programs were

written for this purpose

CORCOEFF: Given the horizontal distance between

surface points and the number of points in a row,
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this program calculates the total distance between

each point and creates a file containing the

correlation matrix.

CHOLESKY: Given a correlation matrix file, this 6

program creates the lower triangular Cholesky square

root of it and places it in a file. eo

GESURF: Given a Cholesky square root file, this

program creates the W(t.) vector and then the Z(ti)

vector which represents the rough surface. The

surfaces generated by this program have a surface

height variance of one. The variance of these

surfaces can be changed by simply multiplying the

existing heights by the square root of the variance, h.

Each of these programs is listed in the Appendix D.

The diagonal terms in the Cholesky decomposition algorithm get

increasingly smaller as the size of the correlation matrix increases and

the horizontal distance between points increases. Roundoff error then

comes into play and can cause the term within the square root sign on

Eq (108) to become negative which should not happen for the positive

definite correlation matrices presented in this thesis. This limits the P

the size of the surfaces that can be generated. Trial and error showed

that square surfaces could be generated that were a total of . 2

correlation lengths long and had 15 rows and columns of surface heights

each separated by .3 correlation lengths. The generated siirfa,'-s ar.

shown in Figs. El through E20 of Appendix E along with the R' S p0

informnat ion f.'r each surface. S
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2 The RCS Progr

The program used to calculate the RCS of the computer generated

surfaces, the Radar Cross Section-Basic Scattering Code (RCS-BSC), w:as

provided by .FWAL/.AAWP-3. The code itself was written at Ohio State

University's Electroscience Laboratory under the supervision of Ronald

ýMarhefka (11]. Although the RCS-BSC has capabilities well beyond that

of just providing physical optics predictions for perfectly conducting

bodies, only the option which makes these assumptions was used since the

oalculations in Part A are based upon these assumptions.

Two minor problems had to be overcome before the RCS-BSC could be

run against the generated surfaces. First, the RCS-BSC could only

handle objects represented by a maximum of 50 plates with a maximum of

40 sides per plate. In addition, the code does not allow plates to be

.Oconcave. That is, all of the corners of the plates must be in the same

plane. The surfaces generated are made up of 196 plates, each with 4

sides, none of which are planar. Therefore RCS-BSC had to be modified

to allow objects to be represented by more plates. This was simply a

matter of plodding through the program and changing the appropriate

dimension statements. Since no more than four sides per plate were %

needed, it was possible to increase the number of plates the program

could handle while decreasing its memory requirement by redimensioning

the plate geometry array to 400 4. The problem of concaveness was

sol[vPd by representing each square plate as two triangles since

triangles are planar by definition. This would have allowed the f

rýý,dmensioning of the arrays to allow only three sides instead of four

bit this was not Aone since computer memory availability was not a

,%



problem and since the redimensioning to allow up to 400 plates had

already been accomplished. Since each of the 196 squares was now 0

represented by 2 triangles, 382 of the 400 allowable plates were used.

To finally calculate the RCS of the surfaces, files needed to be

generated that set the proper control parameters for RCS-BSC and placed

the surface height data in the proper format. Program BUILD.FOR

accomplished this chore. In addition, since a single run of RCS-BSC

against a surface took 27 CPU minutes on the VAX, batch files had to be

written to run the code after hours.

As mentioned, the run time of the program was a concern. Even

limiting the RCS calculations to 5 degree increments between 0 and 900

the calculation of a single pattern took 27 CPU minutes. Therefore,

only a limited number of surface RCS calculations could be run. The

final series of runs consisted of 10 Gaussian surfaces and 10

exponential surfaces. The heights of these surfaces was scaled so that

each had mean surface slopes of 5°and 250. The RCS of each of these

surfaces was in turn calculated at 5.46 Ghz and 17 Ghz so that the

pattern could be compared as a function of the wavenumber k. The RCS's

calculated for each surface are given in the tables associated with each

surface in Appendix H.

Having completed all the runs, the RCS's were averaged at the

discrete angles of incidence. To average the RCS's of the surfaces, A

each RCS was first converted to square meters. The average of the RCS's S

was then calculated in square meters and then transformed into dBsm.

Tables I and IT give the results of this process along w'ith the N

physical optics solution for the RCS of a flat plate at each point.
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These results are also graphed in Figs. 21 through 24. The RCS's of the

"flat plates are provided so that one may see that the diffuse scattering "

does indeed fill the nulls of the coherent pattern and decreases the the

peaks of the pattern.

The results of this experiment show excellent agreement with the

predicted results. The selected combinations of mean surface slopes and

frequency assured that hk ) 5 for all measurements. Therefore, as

stated in Part A, the scattered power should be primarily diffuse and

independent of frequency. Comparison of the results shows that

frequency independence. In addition, comparison of Figs. (21) through

(24) with Figs. (18) and (19) show excellent agreement between the

behavior of the average RCS as a function of mean surface slope and

incident angle as well as good agreement between the actual RCS values

I •O and the predicted RCS values at small angles of incidence.

'4,
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TABLE II

<RCS>/Area for Gaussian Surfaces (dfsm)

Gaussian Flat
at•n (s) =5 at.an(s) =25 ,•

An k5 h=7!hk=16 hk=83 k=1i4 k=357.%
Ang hk*hk2

0 23.46 22.83 8.45 4.53 36.20 46.08
5 15.39 15.62 8.06 6.84 10.55 5.64

10 7.11 5.00 8.19 5.08 8.73 7.54
15 -1.81 -4.40 4.73 2.44 6.25 6.13
20 -5.73 -10.11 5.02 6.12 3.74 -3.96
25 -6.29 -14.55 4.42 2.49 1.18 -20.52
30 -8.86 -13.96 4.53 1.68 -4.28 -5.54
35 -11.76 -18.11 0.56 0.66 -11.69 -7.33
40 -11.22 -17.26 0.20 1.84 -3.75 -20.65
45 -13.65 -18.83 -3.02 -5.96 -8.26 -5.93
50 -13.44 -17.99 -7.81 -10.40 -17.30 -22.52
55 -18.15 -18.83 -11.53 -17.57 -14.49 -19.59
60 -14.01 -21.62 -16.34 -21.17 -9.85 -10.08
65 -22.19 -24.07 -16.68 -22.04 -37.22 -41.25
70 -18.01 -25.53 -17.36 -24.74 -17.25 -17.77
75 -21.28 -24.42 -22.84 -25.01 -21.47 -19.83
80 -26.70 -19.06 -21.20 -24.09 -28.48 -31.13
85 -26.84 -33.80 -20.46 -19.84 -28.15 -30.60
90 -32.05 -32.58 -17.56 -17.98 -99999 -99999_j

I
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TABLE III

<RCS>/Area for Exponential Surfaces (dBsm)

Exponential Flat
atan(s)-5 atan(s)=25I~ g I............k. 5 ......... .h,*"*** "*"*** .................................... ............ . .......... .....~'4............................

20.00 19.45 k=2 hk=16 hk=83 k-114 k=357

0 20.00 19.45 4.51 7.65 36.20 46.08
5 15.08 13.28 5.12 1.05 10.55 5.64

10 5.89 4.11 6.13 4.50 8.73 7.54
15 -4.59 -6.01 2.63 4.05 6.25 6.13
20 -8.32 -11.13 1.90 1.59 3.74 -3.96
25 -8.47 -14.14 0.59 1.87 1.18 -20.52
30 -13.55 -16.54 1.36 0.71 -4.28 -5.54

" 35 -16.08 -18.42 2.38 2.21 -11.69 -7.33
40 -16.60 -19.28 -3.03 0.20 -3.75 -20.65
45 -18.16 -23.18 -3.59 -3.06 -8.26 -5.93
50 -18.19 -22.71 -8.42 -10.08 -17.30 -22.52
55 -21.28 -25. 32 -15.82 -19.25 -14.49 -19.59
60 -18.36 -23.92 -17.51 -20.75 -9.85 -10.08
65 -22.68 -29.15 -16.41 -24.63 -37.22 -41.25
70 -20.00 -26.81 -21.88 -22.91 -17.25 -17.1
75 -23.00 -28. i -22.79 -23.12 -21.47 -19.83
80 -28.01 -22.40 -23.33 -27.80 -28.48 -31.13
885 -27.23 -32.65 -19.98 -23.81 -28.15 -30.60
90 -32.82 -30.64 -18.50 -16.06 -99999 -99999
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IIV. Conclusion and Recommendations

1. Summary of Work Completed

In this thesis it was postulated that any joint probability

density function used to model statistically rough surfaces should

decorrelate into statistically independent random surface height

variables. A joint exponential pdf which met this requirement was then

introduced and the diffuse scattering properties of surfaces modeled by

it were derived using physical optics and infinite conductivity

approximations. This represents the first time the diffuse scattering

properties of a true joint exponential pdf have been calculated. The

resulting scattering properties of the joint exponential pdf surfaces

were then compared to the scattering properties of the joint Gaussian

pdf and a joint exponential pdf and were found to be significantly

different.

In addition, a technique was introduced whereby one can generate

rough surfaces that satisfy virtually any kind of statistics. Then, 10

surfaces each that satisfied Gaussian and exponential statistics with mean %

surface slopes of 50 and 250 were generated and the high frequency RCSs

of these surfaces was calculated. The resulting average RCS's per unit 0

area for the different types of surfaces were shown to be in in good

agreement with the RCS's predicted by the more traditional means but to

deviate from the traditional predictions off normal angles of incidence. 0

88p
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S2. Recommendations for Further Study

Several follow on studies that could be conducted are enumerated

below.

(1) The rough surfaces studied in this thesis could be expanded to

include rough surfaces that have finite conductivity. The

calculations could be done using Eq (79) with the scattering

matrix elements defined for the particular surface under

study. Introduction of finite conductivities to the surfaces

generated by computer in Chapter III, Part B could be easily

accomplished.

(2) The effects of different correlation coefficients upon the

diffuse scattering properties of the joint exponential pdf

could be studied. This would require only slight modification

to the integrand of Eq (78) since the characteristic functions 0

are a function of the correlation coefficient. It would also

be possible to replace the Gaussian correlation matrix used in

Chapter III, Part B with some other type of correlation

matrix. This was tried for an exponential correlation

function with no apparent problems.

(3) With the introduction of the rough surface generating 0

technique, surfaces that meet other ty;-pe of statistics could

be generated and the RCS's calculated for comparison to the

ones studied in this thesis. •

(4) Follow on work could be done to show the validity of modeling

rough surfaces with joint probability density fumctions. In

this regard, the surface heights of actual terrain and other
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rough surfaces of interest could be measured and statistically

analyzed. Also, actual Laser and radar cross section

measurements could be made and studied for comparison to the

predicted results.

(5) Surfaces appearing in nature usually have more than one type

of surface roughness. For instance, terrain might have large

scale roughness that is properly modeled with a certain joint

probability density function while its smaller scale roughness

might be more properly modeled by another type of jpdf. On

top of the terrain one would possibly find ve=getation which

might best be modeled by randomly oriented cylinders.

Therefore, a study that showed the construction of an entire

surface model might be appropriate.

S(6) Finally, a study that looked at the total bistatic scattering

of different types of rough surfaces could be done. This

study should include an integration of the total power

scattered diffusely for different scales of roughness. This

power could then be subtracted from the total power incident

upon the surface. The remaining power would be the coherently

scattered power. The total scattered power would be

represented by the addition of the diffuse and coherent

scattered fields.
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8 Appendix A

Characteristic Function for the Bivariate

Exponential PDF

The purpose of this appendix is to show how the characteristic

function 1 (E ,.P;P) for Pyati's two dimensional exponential pdf,

Eq (3), was derived. The characteristic function 12 (v1 ,v 2 ) of a

two dimensional pdf P2 R ) is defined as [6:189]

T2 1VI 2 j 2 12 ex v1<1 + j 2 2-' 1~d2 (A-1) I.

-. D -<D

To find the characteristic function of Dr Pyati's two dimensional

exponential pdf, replace P (<1 ',) in Eq (A-i) with Eq (3) and solve.

The integrals that need to be solved to obtain the characteristic

function are shown in Eq (A-2).
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In Eq (A-2), <i and 4a symbolize two random surface heights which

are functions of x and y. (1 and ( 2 are separated by a distance r and

where P - P(r) is the surface-height correlation function. I is a

modified Bessel function of the first kind of order a. Also, sgn(x) is

the signum function of x.

E,,(v 'v ;P) ex p _< I_ 1

2 12 4h2 (1-P•2) hL 1-P

-) hjl-P2 ) J s 2

1: 2

[2P(4< 11 2 1)1•/12

/ (2n + 1)2 2an+1 h(1-P2

n=o

Sex p j (vtI + v 2 2, d( I d( 2 (A-2) q
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At first glance, it appears impossible to obtain a closed form

solution for Eq (A-2). However. after much trial and error, a valid

solution was obtained.

The first step in solving Eq (A-2) is to remove the dependence of

the integral upon the absolute value functions and the signum functions.

This can be done by using the following relationships.

I< 1.2 1 -1,2 for - 1.< 2i.2 < 0

1 , for 0 < 1 < 0 (A-3)

sgn(, 1 -1 for -OD < (,. < 0

to +1 for 0 <p1..2 < (A-4)

• 
ie.

Using equations (A-3) and (A-4) the above Fourier transform

integral, Eq (A-2), can be written as the sum of four integrals.

1 (v,v ) I + 1 + I + I (A-5)
2 1 2 1 2 3 4

The values of I, through 14 are given on the next two pages. Also,

a substitution of c h(1-p ) is used for brevity.

'-d%9.
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0 0

oo~

Il=• exp I°L1 1  2 2  Jd 1 ( A6

I + 2"2 C 1 2 /2

4he c

12~ ii~e~ L + {I

-OD -OD

C i i i I
8 2PC <I 1 2 1/2

+ -- -

n2 j o 2n + 1) 2 [ c

n=0

exp L CVJ + V2 (2 ) dL. 1 d( 2 (A-6)

1 2 =e -p I

4hc c c

t..94 -- 
I I ,

"2 C2n + 1)2 I2n+l C

" ex-p j cv I I + v2 -2) d( ldý 2 (A-7) ;

94'-



S!t

22 < I (__ _ 1/2

13 - ex-p [X I0

4hc c c

0 -'Xm

-~~ 1/21
71 I( 2n + c

n~o

exp i v1(1 + v(2 ° d(1( A9
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These integrals need to be arranged into a form that can be

integrated or for which an integral is known. One form that works was

(see Appendix A.-) is given by

x Feo d r(p) cos(pe) (1
2 2 p'p/2

( a + rn)

0

X e sin(rw) r(p) sin(pe) (
pa 2 +r 2 ) p/2 (A-1f

0

a j cos 2+ r 2) 2  (A-12)a Co_1 a 2+ m2 /

Several manipulations must be performed to get integrals one

through four into the above form. The first step is to make all the

limits of integration to be from zero to infinity. This is done in two

steps, first making all integrals start at zero, then changing any

negative infinities to positive by changing the sign of the appropriate

variable. These changes are shotwn on the next four pages.
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Step 1: Change order of limits.

It =ex-p - ,, 1I 0
4he c c

0 0

OD

n 2 C2n + I1 2 12n÷l, C

n~o

e%-p d' ( ( -3

+2P - 2) ' "

12=- exp [
4hc c c

0 0

8 2PC(12 /21~

Ty ) C2n + i2 L c jn~ L

ex-p j ~ 1  2 93d(ld2  (A-i14)
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3 exp I
4hc c c

00

12nI C- 21/

" •n 2no (2 n + i)2 •2n÷l C

ex p j v I v 2 (2)J d< d<2  (A-15)

4• : exp 10I

4hc

00

8 j 1  2+1 x2)1T2
"2 (2n + 1 2 I2n÷ c

ex-p j ( VII + v'2 <2) dý1 d(2 (A-16)
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r

Step 2: Make all limits positive.
1 2 20 1 r2)'/2

It = -- exp, I

4hc Lc c

0 0

8 77' 1 2 )( 1/j2
+ 2 n 2n + 1:2 2n+t c

n~o

xexp [j - v 2 < ] dýý dý 2  (A-17)

.0 2 =- expo - < I
1 c

0 0

8 2 21/21

2 C2n + 1 2 2n+÷ I

"* c I
n=o

exp j (vj 1 - v 2 2v J d( 2  (A-18)

b t
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13 :exp <.I°
4hc c c

0 0

8 1 2P( 1<2) /

2-- =o (2n + [)2 12nl C

excp j -V Vý2 2  d(I1 2 (A- 19)

IDt M

j 4hc 
]{

0 0

8 1 2P C~ 12 /21
I2 j2r + [ C jf

n 0

n9,o

e'z-p -11+\Y2) d1 d( d 2  (A-20)
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These integrals can be simplified by noting that they are really

the sum of two integrands. Thus, if the simplifications listed below

are made, the integrals can be written in a workable form.

P[ 1/22)1/

A l 2 (A-21)

o C < )1

B - I(A-22)
7z (2n + 1)2 I2n~l

n=o

1 1 21
D - e%-p (A-23)

4hc

With the use of these substitutions and equations (A-17) through

(A-20), the integral Eq (A-5) becomes

I E f f D (A + B) ex-p j C-v -V dý d ýtd

+ / / D (A - B) ex 2 j-v
0 0

x X,
+ I D r B) + ) j 211

00

+A+
0



Groupiag like terms, Eq (A-24) can be rewritten as

E J f D (A + B) exp JCv,+v, ý 2)
0 0

+ exp [-j (Vll+v2 (2 J} d(Id 2

+ f f D (A B) exp (v -2 (2)00
+ exp [-j (v f1-v 2 2)} dt 1 dL2  (A-25)

Using Euler's identity exp(jx) + ex-p(-jx) = 2cos(x), Eq (A-25)

can be written in the form

E -
2 = 2 f f D (A + B) cos vIC,1+v2 )

0 0

+ 2 f f D (A - B) cos Cv I-v 2 ( C2 (A-26)
010

1 02



Equation (A-26) with the use of a the trigonometric identity for

the addition and subtraction of angles, which states cos(cL,3) = cosa

cos,3 -; sina sin 3, can be written as

SE 2 1 /D (A + B) {os6v4 1  os•v•.9

- sin~v1, 1J sinCv2 <2) }

+ 2 f f D (A - B) f Cos6v(J cosCy-2 J

+ sinCvi1 ) sin v2CV2) } (A-27)

Expansion of Eq (A-27) simplifies to

TE2 = 4 f f D ( A cos(v 1 )cos(v ( ) d<d

2 0 0 1 1 2 2 1 2

- 4 f f D C B sin(v, ()sin(v 2( 2) d( Id' 2  (A-28)
0 0

Now the following substitutions ' = ( /c and 7 = <2 /c are made

and the Bessel function is replaced with its series equivalent Eq (A-29)

found in [1:375].

z ~(z2/4 )k
I•(z) ;•(A-29)

2 ~ k' F(L +k+1)
kO
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When 1, and k are integers, r(.+k+1) = (U+k)' [1:255] and Eq (A-29)

reduces to Eq (A-30).

z V. Z2 14 kz[-•'- T ' (z /4)k

I(z) = (A-30)

kO

Eq (A-30) and the tand R substitution are used to transform the

variables A, B, and D, given in Eq (A-21) through (A-23), into the

following equations.

A =I U2P ý1/2 1/2
o

2 (A-31) ,
kk=•

8 1 2 +IUP t1/2 1/2

Sz(2n + IJ"

n*O

8 Cs' ý1/2 T7 1/2) (2 7Ti)n2ZZ (A-32)
S2 U2n + 1)2 k' (2n+1+k),'

k-O n-O

1
D - exp -c -') (A-33)

4hc

'p.
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Substituting Eq (A-31) through (A-33) into Eq (A-28) allows

theintegral to be written as

2k

E : 7 f12 exp(-,) k cos(cv) d
2 h / k!' J

k=O 0

ex-p(-R) R cos(cv2 7) d77

0

8c 
p

n 2h C2n + 1) k! (2n+l+k)!
n=O k=O

e'-p(-0 n+k41/2 sin(cvIt) dý

0

exp(-1) n+k+i/2 sin(cv 77) di (A-34)

0

J,.
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Eq (A-34) now has its integrals in the form of equations (A-10) and

(A-li) for which solutions are known. Therefore, the characteristic

function tsonfor Pylati's two- dimensional exponential pdf has the

following solution.

1 2k

E- c 7 ,o2 r" 2 k+1) oos((k+1)0,.3 cos((k+1)e2J
"+ •'(i + (il+<'+'+ ( c <v 2)2](k*I)/'2

knO

"n2 h Z (2n + 1)2 k! (2n+l+k)!
n=O k-O

r (n+k+1.5) sin2ln+k+l.5)e,) sinC(n+k+l
(A-35)

C1+ ( ov , 1 ) 2 -( l'+ 1 .5" / 2 0 .+ ( c v- 2) 2 J( n +k + I .5 )/ 2

Where e and e are given as
2

-CO 2 2 1/2

2 c o s .2 J

" sin 2 2 1/2 (A-36)

1+.2

N

'-Z.
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ALFinally, letting the arguments be v 2 v

E ( - P 1P2P 2 Cos 2 n±,1je

2 (v z- zP ClP) 1 + ((1-P2 )hv z)J2-)(k+1)

kuO

8- (1-P)2 2n+I+2k

ir 2 Z Z C2n + 1)2 k! (2n+1+k)!.

n=O kmO

r 2 (n+k+1.5) sin 2 (n+k+1.5)e)
(A-37)

(1 + ((1-p 2 )hv z) 2j (r+k+1 .5)

e taný C"' ~Cos 1 11

.1 +1P )hvP )h /2]

sin 2 2-v (A-38)
sin C,+ ((1-P2 )h V ) 2J11

LAM
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Appendix A.1

Solution of Integrals from Appendix A

This appendix derives the integral identities that were used in

Appendix A to find the characteristic function for the exponential pdf.

The integrals, Eqs (A-10) and (A-il), are rewritten here as

Eqs (Al-i) and (Ai-2) respectively

p-I -axI e cos(rex)d~x (Al-i)

X e sin(mOx)dx (Al-2)

0

The solution to these integrals can be found by solving the complex

integral

xP-1 e e x(AI-30 !
and noting that Eq (AI-i) is simply the real part of Eq (A--3) and

Eq (AI-2) is the imaginary part. Therefore, the real and imaginary

parts of the solution will correspond to the solution of Eq (Al-I) and P%

Eq (AI-2) respectively.
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By making a substitutionthe integral can be rewritten

p-I -sx
x e dx (A1-4)

0

with s :(a-mj)

This is then followed up with another change of variables to get

-p-• -p (p)

s tp-I e dt = s F(p) = (A1-5)
(a-mj)"

¶ 0

sx t dx = dt/s

p-I tp-
x - sP-I

The integral can now be put in its final form by representing (a-mj) as

sqrla +m )exmtp-jpO) with

O~a -1 m =cos- 1 / (.A1-6 }
[za ]'J~co a 2 + m )2 /2]
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Then

x- eax ( r(p) CosI-7)
x (a Co+(x)&

[ x~' ~ snun dx2 2 p/2
(a + m )

aa

0r
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Appendix B

A Closed Form Solution for the First Series of the

Characteristic Function

The purpose of this appendix is to show how a closed form solution

for the first series of Eq (A-35) is derived. The first series of Eq

(A-35) is repeated in this appendix as Eq (B-i). This solution tas

arrived at in conjunction with Reif [19].

S (1-P 2 ))~ P cos((k+1 )e

/.. L C (1+( 1- _2 ) h-,1) 21 (~ k+1 )/2

cos((k+l)& ) }

0 1 tan1 (I-_,0 )hv2 =Co 1•<k /•( - ))'

2 1_P2)hv 2 (./BI

((--P)h)hv"

:1sin 1t+B-P21_) 2 ]1/2]

2 - %

P )hv
- I (B-2

[1 ! + (i•h

-' ,

S++ .. ... _ ,- i ... .., .- . .. + . ... . . ..", . ... ..2



To obtain the variable e2' just replace vI with v2 in Eq (B-2).

Then, using Euler's identity for a cosine, the cosine term, cosc(k+,l)e,1J

is written as Eq (B-3). The same is done for the cos((k+l)e) term by

replacing e with e
1 2"

exp j(k+ 1 ) e + expp-j k+1)& 1
cos((k+l)e ) = - (B-3)

2

Also, to reduce Eq (B-i) to a workable form, the following substitutions

will be used.

= I + "1(P2)hv X 1/2

E = (1_ h 2 ) 2 1/2 B5
B : •+ el-p )hv• j j _B-

The use of equations (B-3) through (B-5) allows equation (B-I) to

be written as

"(1-P 2 2k f I exp(j(k+ 1) e +exqpC-i(k+1)O e
-1 4 -%B Pk 2

k=O

[exp Cj (k+l)e 21 + ep-p(-j(k+l)s (B-6)

1.1
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Expanding Eq (B-6) by multiplying terms to remove the brackets

yields

2 2k

"X, = 4A{B ýAktk expcj(e,+e2 )) exJ p [Jk(el+ed)

kO

+ ex-p(j(e 1 -6e 2 ) ex-)p jk(OeI-e )2

+ ex-p[-j(&1 -0•2 )) expC-jk(0I--e 2 )

Sexp[-j(e1+O2 )) exp--jk(e1 +0 2 (B-7)

Using the geometric series identity, X which is valid

k-O

when IXI < 1, [MH:107] equation (B-7) can be written as Eq (B-8).

Equation (B-8) is now in a close form since the summation sign has been

removed.

(I-P ) expcj ( (eI+e )2

4 AS - P expcj(eI+e 2)

exp(j(el -e 2 )exPC-j(_e_ -e2)
+ +

- 2 expcj(el-e2 )J &B - P 2 exp -j(E( -e )

exp[-j ( e +e 2) )

+ 2 (B-8)P• e P x p(-j(e +02)

"%2
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Euler's indentities .

ex-p(jx) cos(x) + j sin(x)

and

ex-p(-jx) = cos(x) - j sin(x)

are used with the substitutions of the terms

•4:cos(O1 +O

2 = sin(& +0)1 2

CO 09 1o(-0
1 2

and

S : sin(O -09

to obtain "'

(1-P 2 ) 21 + j* +

24 j02,24 -%= - - - -

- _ 2 - + .jP2 . 2

a,

"a.

"•2 "€'••; g . 2•.'i€2-' • -'i l~ •,' "-'•;•; ' ;'" - ". "-2-' .',;.•2.'€ 2'2.- •"."2-2.-.'•'.'€ -;ez•.••'•o•÷ke•,•XI.



I

Manipulating Eq (B-9) by multiplying each term's numerator and

denominator by the conjugate of its denominator yields

(1 -# 2) 21 - 2 2P 2 _2 2 2 2

"24 222 2 + 42 1..2•

42-.,SP P~ + p 4D+p
2S•,F - 2p 2 ,] 2 -2P 2B2

22 42 2B-2
2 2 pP 7 p 2P

+ 2 2 _ 2p&12 + p4p2+p4S2 (B-10)

Since

N2 + N 2 2c(e6+e ) + s
1 2 1 2

and

F + S cos (eI-92) + sin 2-(e,-) 2

Eq (B-10) can be reduced to Eq (B-I1). ON

2 2 i( 1-P r - P

4.3

+2 2P (B-21)
2 P + 4
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In Eq (B-12) and (B-13), the trigonometric identity for the cosine

of the sum of two angles is used to expand r' and 7 in terms of sine and

cosine of e. Also, Eq (B-2), Eq (B-4) and Eq (B-5) are used to evaluate

the sine and cosine of e.

S= cos(O1+C2) = cosecose2 - sine sine2 (B-12)

p = cos(e, -e 2 cose cose2 + sine sine 2 (B-13)

cos, cos(cos (1/%)) = (B-14)

1-

cos9
2  Cos(coss 1/2) (B-15)

2 2

sine1  sin sin[ (B-16)%

si sn 1_P2 )hv 2 (1-P 2)hv 2 0

sine 2 = sin Isin-12 (B-17)

Equations (B-12) through (B-17) are used to write new equation for

a and ; . These terms are now void of sine and cosine terms.

1 - ( 2-p )hv (1-2 )hv 2 - (I-P ) 2h 2v 1

(B-18)

I + ( i-oPhv (-P )hv2 1 + (1-k ) 2h v % .

(B-19)

%..qL
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.Substituting equations (B-18) and (B-19) into Eq (B-i1) yeilds EqI

(B-20). The values for A 2 are given in Eq (B-21).

(1 2) 1 (lI P2)2h2v2 v2 - 2"X, -2 I2)2 2P2 ( (_pI ) 2h2 4

{12+2P(l (1P2)2h2 vv 2 !

S2 2vv 2 -( 2

2 p2 2 2 (1 + 2 2 2 ) 12 (-20
2- a + p

with

2- (I+ (( )hv)2) (I +4 ((1-P2 )h- 2 )) (B-21)

Combining Eq (B-20) and (B-21) and factoring like terms reduces the

final equation to a close form solution for the first series of Eq

(B-I).

1 _ (1-P2 )h 2VIV 2

X," 2 ( p )2h4 2 2 + 2 2 + 2 22 2
vl I vl 2 1 2phv2+i

2 2

1 + (1-P )h V 1
"V

2

+ 2 2 2 2 2 22 (B-22)
S(-p)o v vV + vh + h 2-P hv" + I

1 1 1 2 12

"~%ft•

1 + (-~ 2 ) 2 ~

+ (B-q
22 222 22 22 ,..

(1-P) hv v h + hv -2k hv ~+ 1

"• ,5' ,'' " "• " " I'" '' . .% '"4 "' ",, ",",'. . -. " "• . "• . -, ' "* ',. •,v '. ,-..1 1 1.--' 2 -1.2 ,,.,',, .



When v I v 2 v Eq (B-22) becomes

1h + (1-P2  2

2L ( P- +h ( -02)hav +1 .

+ I 1_)2 )h 2 2 (B-23)

(1-P0) h v + 2h v + 2P h v+ 1 2

Substituting in the extreme limits of P one finds that

"hP= 1 + h (B-24)

2~ 22B-2 22

P~l 1 + .4hvAl -; 1 ÷. .h2 v2  (B-25)

which aids in confirming the validity for the following reasons. First,

at P=0 the exTponential jpdf reduces to the square of marginal

exponential pdf (see Eq (89)). Therefore, the characteristic function at

p=0 becomes the square of the the marginal exponential characteristic,

function (Eq 99). As P gets larger the second part of the joint pjof

becomes increasingly significant. Therefore, this first series, bioh

represents the fnurier transform of only the Fir'st p•Art o-if Eq )2) shoulA]

only .ive a porttion of the total solujtion. Since the total joint

.hara7teristic- function .should give a value of one at P01, the value -if

,*nl.y the first part of the total solution should be something , thari

*orI . Eq, iation (B-25) obviously meets this cnnditi,-n.

SIRI
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Appendix C

The Truncation of the Second Series of the

Joint FE\xponential Characteristic Function

The purpose of this appendix is to show the method by whIch the

second series of the the characteristic function for the joint

expo<nential pdf,Eq (A-37), is reduced for the purposes of numerical

ca'.culations. The series is repeated hear as Eq (C-1).

8P(1-P 2  -2n+ F 2 (n+k+l+.5)

'7 Cn + 0) k 2n+ 1+k)

n=0

2lk 2

A sin 2 n+k+l+.5)1 912 (~kI+5)C-I)

1 + ((1-P2 )hv )2 )(n+k l÷.5)
z

2 rS(1-P 1

' ( 1 + ((1-P )hv%

Although the ratio of the gamma function and the factorial terms is

not equal to one in this series, it approaches one for values of k n.

Therefore, for k sufficiently largae compared to n, the ratio of the

gamma function to the factorial terms is replaced with one for the

r-maining enrms. When the ratio is assumued equal to one, the denmetri,-

s•ri•s i,.-;t Vy used in Appendix B can be utilized.

1 19 •
0

3 3 7W 3 ~ '~~'~%



The determination of exactly ,,ere to alter the series and mxe

the approximation that

r 2 (n+k+1+.5)

k' (2n+1+k)W

is of course arbitrary. One basis upon twhich to make such a decision is

to decide how close to one the the left side of Eq (C-3) should actually

bp and then determine the number of terms required to reach that point.

Using a Stirling's formula for the evaluation of the Gamma and factorial

terms [1:257] a program was written that produced the data in Table

(C-I). Table C-I lists the value of k required for the ratio to reach

minimum values of .98 and .99 respectively for values of n ranging from ..k%

0 to 20. The values of k were incremented in steps of 100 and only the

even numbered n values are given for purposes of brevity. The

documented program is listed in the software appendix under the title J.

G.AMPAT. B.AS.

TABLE C-I *%

Number of k Terms Required to Reach .98 and .99

n .98 k .99 k

0 100 100
2 400 700
4 1000 00

21100 4000
8 3400 -1700

10 4600 6900
12 6100 8900
14 7700 11300
16 9100 1 2200
1 I 11200 1:3800
20 13900 15900

120



The series can now be sunmmed up to as many k terms as required and

"then a remainder term, calculated by setting the left side of Eq (C-3)

equal to one, should be added. This remainder term is found as follows.

After surnming m terms, and using Eq (C-3), the series on k is

S2k sin [(n+k+l+.5)O

K = -(C-4)

2 2 (n+k+I+.5)(C)
1 + ( (1-p2)hv) 2(~~+"5

k~m

To use the geometric expansion identity, the lower index of the

summation must be zero. This is accomplished by letting q = k-m and

thus k q+m. Then Eq (C-4) becomes

P 2mP sin [(n+q+m+l+.5)e

+ 1 2 )(n+m+I.5)/., + '2 )q (C-5

q=O

where i : l-P 2 )h-)2 Dealing only with the summation now, Euler's

identity can be used to expand the sine term, the series thus becomes

P 2q(eXpl (n+q+m+l+.5)O)_exp(_jln+q+m+l+ .5)))2

K 2 2 (C-6)
(2j) (1+i )

q =0

.%

t
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Ex-panding Eq (C-6), the sunmation can be ',ritten

[7P22 
P~2 2j 1

"4_ _ [ 2 - exp(2je(m+n+1.5))

q-O

- [ 2ex -2 jqO(m+n+1 . 5,) I (C-7)

Letting

2
p

( 2 and 9 = e(m+n+1.5) (C-8)

the application og the geometric ex-pansion identity brings the series

remainder to

F 2jC -2jo

4e2je - 2__ (C-9)- 1- 1-Ze 1--e

From this point on the manipulations are not unlike those in

Appendix B. Rather than presenting the algebraic gobbledygoo1: the final

solution is just presented in Eq (C-10).

P 1• *sin(a•) /;cos((T)

K + Z s (C-10)
2 n + 2 +m÷ 1 5) 2 2 2 22. ( + i 1+1- - + 1- - + •

2

T- = O(m+n+1.5) l-Icos(20)

i ((1-P )hv%-) 2 -sin(20)

This result is used, in the programn 'IAIN2.DAS hi -'cmputes valIifes

the exponential characteristic t'unct ion.
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Appendix D

Software

This appendix contains the source code for some of the programs

that were written in direct support of of this thesis. Those programs

-ritten in support of Part A of the analysis chapter are ,Tritten

primarily in BASIC and were run under compiled TurboBasic . Those

programs %.ritten in support of Part B are in Fortran and were compiled

'a
and run on the Vax 11/785 that was provided by AFWAL. Each program has

its own documentation and abstract; the titles of the programs are

listed below.

-%POPDF.BAS: Calculates values for the exponential joint

$ probability density function.

YRTIN.BAS: Computes values for the joint exponential

characteristic function.

G(!.RAT.BAS: Determines the ratio of the gamma and factorial

terms in the second series of the exponential joint CF.

SRCS2.BA.S: Performs the nuxnerical integration to get the

<RCS>/Area for exponential surfaces.

CORCoEFT.FOR: Builds a correlation matrix.

C(HOLESI,'. FOR: Finds the Cholesky square root of the

n,0u'rehlaticr, matrix.

GESITRF.TFCR: Generates random rough surfaces for different

st.atistics.

BI[.I-D.F-R: Buils the data file for use by the RCS-Basi,-

Sratt&ring Code programn. 2

12:3I



10 sub E-PXOPDF(v,p,zl,z2,w) static

* Sub: ETFOPDF.BAS *

* Purpose: Calculates the value of the exponential *
* pdf proposed by Dr. Pyati. *

* Input Parameters: *
* h = RMS surface height *

'* p = correlation coefficient *
'* zl = height at a point 1 *
'* z2 = height at a point2 *

'* Output Parameters: *
w : probabilty of getting z2 and z1 *

pi =4*atn(1)
' Calculate values for the sugnum functions and take absolute

values of z1 and z2
sgnzl = I : sgnz2 = I
if zi < 0 then sgnzl = -1 end if
if z1 = 0 then sgnzl = 0 end if
if z2 < 0 then sgnz2 = -1 end if
if z2 = 0 then sgnz2 = 0 end if
z1 = abs(zl) : z2 = abs(z2)

Calculate the first term
termi = ex-p(-(zl+z2)/(h*(l-p^2)))/(4*h^2*(l-p^2))

Compute the zeroth ordered Bessel function
30 a = 0 : x = sqr(zl*z2)*2*p/(h*(1-p^2)) :N. = x
40 call modbesl(a,-x,term2) ' the modified bessel function

-N.

Sum only the first 15 terms of the infinite seires of Bessel
functions "

50 sun = 0
V) for n 0 to 15
TO a : 2*n+l : .x-= x
301 call modbesl(a,?c<, bessy)
90 tm bessy/a^2
1)0 -um = sýum+tm-
11) if •,,m oldsum then

120oto 500
130 end if
1140) lrisUMi: sum
170 -" n
54)) 'erm3 : iim*8S/pi^2)*s•nzl-s -z2

Combine the terms to !et the total ,(olutio-nS•!1) L : te= m .te)rrn+termh)U

U,.

Vi -



sub modbesl(a,N,bj) static

Sub: XIODBESL

Purpose: Returns the value of the modified bessel
function I

Parameters:
a = order of the bessel function
x = point at which bessel is to be calculated

bj = returned value of the bessel function

if a = 0 then ' Compute by polynomial approximation
if abs(x) < 3.75 or abs(x) = 3.75 then

t x/3.75
"bj 1 + 3.5156229*t^2 + 3.0899424*t^4
bj = bj + 1.2067492*t-6 + .2659732*t-8
bj bj + .0360768*t^10 + .0045813*t^12
goto done

end if
if x > 3.75 then

t x/3.75
bj = .3894228+ .01328592/t + .00225319/t^2 -

bj= bj -. 00157565/t^3 + .00916281/t^4

bj - bj - .02057706/t^5 + .02635537/t^6
bj bj - .01647633/t'7 + .00392377/t-8
bj = bj/(sqr(x)*ex-p(-x))
goto done

end if
end if

if a = I then ' Compute by polynomial approximation
if abs(x) < 3.75 or abs(x) = 3.75 then

t = x/3.75
b.j = 1/2 + .87890594*t^2 + .54918869*t^4
bj =bj +.15084934*t^6 + .02658733*t^8
bj bj + .00301532*t^10 + .00032411*t^12
bj x= b
goto done

end if
if x > 3.75 then

t x/3.75
b~j =.39894228 - .3988024/t - .00362018/t^2
bj b.j + .00163801/t^3 - .01031555/t^4
b.j = b.j + .02282967/t^5 - .02895312/t^6
bj = bj + .01787654/t^7 - .00420059/t^8
b.j bj/(sqr(x)*ex-p(-x))
goto done

• .' end if
'.' '.% end i. f
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'(sub OK)DBESL.BAS cont.)

Use infinite series representation
for m =0 to 10000

gosub NEWTERM
bj = bj + term ,,
if TERM < 1E-15 then

goto done
end if

next m

NEW7ERM:
numer = (x/2)-(2*m + a)
for n = 1 to m

numer = numer / n
next n
for n = 1 to (m+a)

numer = numer / n
next n

return

999 done: I
end sub

fro

SOa

p.-o

"%...

I~it,•,.p
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Prgmn: GAMRAT. BAS *

Purpose: This program calculates the ratio of the *
gamma function term to the factorial terms in the *
part of the exponential CF that was not put into *

closed form. As set up, this program will output *
the value of k needed for the ratio to be at least *

.99. This data is then used in the program that *
calculates the CF (MAIN2.BAS). *

Algorithm: The program uses Stirling's formula *
[Abramowitz & Stegun: 257] to represent the *
values of the gamma functions and factorial *
terms. Logaritmic calculations are utilized to *
avoid overflow problems. *

for n 0 to 20 step 1
for k = 0 to 100000 step 100

ul = log(n+k+1.5) : um =(1+1/(12*(n+k+1.5)))+(I/(288*(n+k+1.5)^2))um = log (um) i

v% = log(k+1) : v2 = log(k+2*n+2) %.A
vml :(1+1/(12*(k+l)))+i/(288*(k+1)^2) : vml = log(,ml)
vrm2 =(l+I/(12*(2*n+k+2)))+I/(288*(2*n+k+2)^2) : ,m2 = log(vm2)
term = ( 2*n+2*k+2)*ul+2*um-k*(vl+v2)-2*n*v2-v1/2-1.5*v2-vnl-%-m2
if exp(term)>.99 then

print using n = 4-- k ::•-# ratio -

I #.-t;x4=#" ;n,kex-p(term)

goto 100
end if

next k
100 next n

1.4
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'* Prgm: MAIN2.BAS *
'** -P-

'* Purpose: Creates the values of the joint characteristic *
function of the exponential PDF. For correlation * ,
coefficient very near 1, this program takes a long *
time to calculate a single data point. As the *

correlation coefficient decreases, the infinte series *
in the solution becomes less significant since it is *
multiplied by the correlation coefficient raised to a *
high power. Therefore, the program speeds up as it *
progresses. However, this program still took 56 hours ,
to complete using compiled TurboBASIC and the 8087 *
numerical coprocessor in the IBM PC. *

, ~*

• Algorithm: As with GAMRAT.BAS, Stirling's formula is used *
for the gamma functions and factorial terms while *

logarithmic calculations are used to avoid overflow. *
Otherwise, this program is simply a straight for-ward *
implementation of the formulas derived in Appendixes *

A through C. *

• Input Files: None *
• Output Files: E:\THESIS\EXPO.DAT * ,'

I ,%,

Use double precision variables to reduce error.
defdbl a-h,o-z : defi t i-n

Setup parameters for the run of 5001 data points spaced .0002
correlation lengths apart with h*vz = 10
pi:4*atn( 1)

10.0 ' Value of Vz
spare = .0002 ' Spacing between data points .

h=1.0 ' PMS value of the surface heights %
npoints = 5001 ' Total number of points to calculate

Open a random access file to store the data p-Ints -nf
fourt$: e :\ thes is'\e:\-po. ,dat"

ojon fouts as =1 len=8
hel ,8 as cval S

in(-rement from 0 correlation tength.w, to I ,orrelatirn ]ength in
steps of .0002 -or. lens.
for ntou z 0 to npoints

tot• ntow*space
p ' Gxp(-to.2) 'aussian (-or Coefficient
gosub charfun 'Calc the CF
I Provid- feedbac-k to the usor
print using tz:: .... p:=.:==.-=:: ,har:z.-=z===";towWp,char

Spt the data in the fil(e,

lset cpvulS$rkIS( har • put :1

128 7
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next ntow
close gl
end

500 charfun:

Sub CRARF•tN

Purpose: Evaluates the sums of the firts and second
series of the characteristic function solution

Input Parameters:
h = RNS value of the surface heights
v = Absolute vale of Vz
p = Correlation Coefficient

Returned Parameters:
char = Value of the characteristic function

These are the 99% cutoff values where the ratio
of the gamma and factorial terms becomes > .99
(see Appendix C) and program GAMRAT.BAS

dim maxk(20)
maxk(O) =100 maxk(1) =200
maxk(2) =400 : maxk(3) =600
maxk(4) =1000 : maxk(5) =1500
maxk(6) =2100 : ma.xk.(7) =2800
maxk(8) =3400 : maxk(9) =4200
maxk(10)=4600 : maxk( 11 )=5000
maxk(12)=6100 • maxk( 13)=6600
maxk(14)=7700 " ma-xk(15)=8300
maxk(16)=9100 " maxk(17)=10600
mak( 18)1= 1200: ma•\k ( 19) =12000
maxk( 20) =13900

sum2 = 0 ' Initialize variable
if p = 0 then goto 900 ' Only the closed form portion is relevant
if p = 1 then

char = 1
goto 999

end if

The portion of the solution which is left in summati,-n f,.z-m
(see Appendix C) is calculated first. The outer summation
is truncated after 21 terms whereas the inner series is
truncated based upon the ration of the gcmma and factorial
terms for a given (n). A remainder term is then added to)
compensate for the truncation of the inner series.
Set up parameters that are constant within the loops

-( (-0^2)*h~v
t = a~n(-)

, ,1 p) "- I 1og(I+cF2) 1:a (1* l-p-2)/p12
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for n = 0 to 20 ' Truncate the series at 20
anl = 2*log(2*n+l)
termk = 0
for k = 0 to (maxk(n)-l)

510 ul = log(n+k+1.5)
515 um = log(1+I/(12.0*(n+k+l.5)))
520 v1 = log(k+1)
525 v2 = log(k+2+2.0*n) h

530 vml = log(1+1/(12.0*(k+l)))
535 vm2 = log(1+1/(12.0*(2.0*n+k+2)))
540 u=( 2.0*n+2.0*k+2)*ul +2*urnl-(k+ .5) *vl

u~u- (k+2. 0*n+1. 5) *v2-xmI- %-m2
545 st = (sin((n+k+1.5)*t))^2
550 if st : 0 then goto 790
560 tnum = pl*(2.0*n+2.0*k+l)+u
565 tden = anl+cl*(n+k+1.5)

term am*exp(tnum-tden)
if term < 1E-40 then goto 795 ' to small to matter
term term*st
termk termk + term

790 next k
gosub remainder ' Add in the compensation for the truncation y.

795 sum2 = sum2 + termk + remain
800 next n
900 gosub sumone Get the closed form part of the solution -

char = suml + sum2
999 return

1100 sumone:

Sub: SU>MONE

Purpose: Caiculate the first series Thich has
a closed form solution 'see Appendix B).

A]:gorithm: Implements Eq B.21 4.'.

Input Parameters:
h = R.*S value of the surface heights
V = Vz
p = Correlation Coefficient

Oitput Paramteres:
suml = Summation of the first series

si I + h^2*v--2*,(1+p-2)
s12: l-h^6*v^6*(p^6-3*pI-s+3*p ' ^2--1
s1,,2 : s12_h~4,*.^.*( p•4+2*€p-3•.,> +h,2*.^*(p,+.3) ,
sumnI: sl/s12

I ,,0 "

.'V.
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1200 remainder:

Sub: REMAINDER

Purpose: The second series of the solution has
been truncated at the point wheic the ratio of
the Gamia functions and the factorial terms is
at least .99. This routine calculates the
remainder of that term of the series with the
assumption that the gamma and factorial terms
completely concel.

Algorithm: Implements Eq C.10

Input Parameters:
h = PRMS value of the surface heights
v = Vz
p = Correlation Coefficient
t = theta angle (see Sub CharFun)
c = shorthand (see Sub CharFun)
maxk(n) and n = (see Sub CharFun)
pl, anl and cl= (see Sub CharFun)

Output Paramteres:
remain = the remainder

...................... t,,p,,,,,99pp9999999p,,,,,,p,,,,p

sigma = 2*(maxk(n)+n+l.5)*t
a = I-p2*cos(2*t)/(l+c^2) : al = log(a)
b = p^2*sin(2*t)/(l+c^2) : bl = log(b)
albl = log(a^2+b^2)
el = log( l-p^2/(l+c^2) )[

p12 = log(I-p^2)
rl = pl*(2*(maxk(n)+n)+l)-anl+pl2-cl*(ma-xk(n)+n+1.5)
rml = rl-el
rm2 = rl+bl-albl
rm3 = rl+al-a].bl
remain:(e ecP(rml)+sin(signma)*ex(P(rm2)cos(si i ma)*exq9 p(rm3))
remain remain*4/pi'2
ret urn

12! 1
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* Prgm: RCS2.BAS *

* Purpose: Calculates the values of the normalized * 'p

'* RCS of the exponentially rough surface. *

* Algorithm: Integrates Eq (87) using a Simpson's *
'* approximation routine and the 5001 data points of the *
'* eponential CF generated by H-\IN2.BAS *

'* The Bessel function is calculated using a polynomial *
'* approximation taken from [Abramiowitz & Stegun:369} *

' Input Files: E:\THESIS\ECPO.DAT *

'* Output Files: E:\TIESIS\JEXPD.DAT *

defdbl a-h,o-z
defint i-n

ex-po will hold the data points for the exTonential CF
value will hold the integrand value at the 5001 discrete
points
result will hold the vaule of the integral for the 1]5
different angles and the 6 values of atan(s)

• . dim value(5001), result (15,6), ex-po(500 1)
pi=4*atn(l)

This section takes care of the initialization of tht-
arrays that are used in the bessel function %
subroutine rather than reintializing the arrays
each of the 5001 times the routine is called.

dim .ja.(7),jbý(7),jc#(7)
Data for calcualtion of Bessel(x) for x(=3 ,

.ja4(0) = 1.00
ja"(1) = -2.2499997 : ja#(2) = 1.2656208
ja--(3) =-.3163866 : ja.(4) = .044447900
ja-•(5) =-.0039444 : ja#(6) = .0002100

Data for calcualtion of Bessel(x) for x>3
jc:(0) = .79788456 : jc#(1) =-.00000077
jc=(2) = -. 00552740 : jc;(3) = -. 00009512
.jcq(4) = .00137237 " .jc#(5) = -. 00072805
jo==(6) = .00014476
.jb(O) = 3.00 : jb*(1) = -. 78539816
jb=(2) =-.04166397 : jb#(3) = -. 00003954
.jb=(4) = .00262573 : .jbt(5) = -. 00054125
jb-(6) =-.00029333 : jb#(7) = .00013558

open "E:\T11ESIS\E\PO.DAT" as 11 len=8
field z1, 8 as cval$

MAL, print "Getting data from data file."
f(,r n=l to 5001

13 2
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get #1 :ex-po(n)=cvd(cvaIs)
next n
close #1
(RCS2.BAS cont.,)

space=.0002
h=1 .0:vzz 10.0
x1 = 1/(l+h^2*vz^2) 'One dimensional Char Fune
for ang:% =0% to 70% step 5%

nang =nang+1% ' counter for result(nang,nslope)
rang = pi*ang%/180 ' P
for m =5% to 30% step 5%

nslope=nslope+1 ' Slope index counter

Scale the wavenumber (ck) according to the angle of
incidence and teh mean surface slope

ck = 10/(tan(m*pi/180)*cos(ran-g))
vx = 2*ck*sin(rang)
for n = I to 5001

tow=(n-1 )$space
arg = vx* tow 'Bessel argument
if (arg<3 or arg=3) then

gosub BESLLO0v
else

gosub BESLH4I
end if 

td

value(n) = tow*j0#"*(exPo(n)-xl-2)t2*ck^2%
& next n

locate I,l:print ang%.,m
npoints=5001
call simpson(v-alue( ),npoints,space,result(nang,nslope))

next m 
'

next ang%

Transfer data to a file
open "E:\THESIS\JEXFPO.DAT" for output as -2
for nslope=1 to 6

for nang i 1to 15%
print #2,nslope*5.0, (nangl)*5.0,result(nang,nslope)

next nang
next nslope
end

13:3 "'



Zeroth order Bessel function polynomial
approximations. Taken from Abromowitz and Stegun.

Input Parameters:
Coefficient Arrays = Filled in main prgm
arg = argument of the bessel function

Returned Parameters:
jO# = Value of the bessel function

BESLLOW:
jO#=O.O
for nbl% = 0 to 6

jO# = jO# + ja#(nbl%)*(arg/3)^(2*nbl%)
next nbl%
return

BESLHI:
theta#=0.0:fO#=0.0
for nbl% 0 to 7

theta# : thetai# + jb#(nbl%)*(3/arg)^(nbl%-l)
next nbl% -

for nbl% : 0 to 6
f0* = f0# + .jc#(nbl%)*(3/arg)^nbl%

next nbl%
jO# = arg^(-1/2)*fO#*cos(theta#)
return

sub simpson(f4(1),n%,h4',result#) static

s :%
Sub: SrIMPSON % N

Purpose: Performs a Simpson's approxomation '

Integration. Algorithm taken from 'Applied
Numerical Analysis by Curtis F. Gerald.

Input. Parameters:
"f-(I) = a one dimensional array of data points
n% = the number of data points in the array
h= = the spacing between the data points '

Returned Parameters: '

result: = the approximated value of the integral

local i%,npane1%,nbegin%,nhalf1%
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Check to see if the n~umber of panels is even
npanel% = n%. - I
nhalfV.= int(npanel%/2)
nbegin% = 1
result% =0

if npanel% - 2*nhalf% = 0 then
goto EVEN

end if

Number of panels is odd. Use 3/8 rule on first three
panels and 1/3 rule on the rest of the panels.

result.' 3*h*/8* ( f#(1) + 3*f."(2) + 3*f.-(3) + f;;(4)
nbegin% = 4

EVEN:
Apply 1/3 rule, add in first ,second, and last *~

values.
rtemp#= h4/3 *(f#(nbegin) + 4*f#(nbegin+1) + f*(n)
result# =result* + rtemp#
nbegin% =nbegin# + 2
if nbegin% =n% then

goto DONE
end if

The pattern after nbegin+2 is repetitive.
(RCS2 .BAS subprogram SIMPSON cont.)

Get nend, the place to stop.
nend% n%.-2
for i% =nbegin% to nend% step 2

result# =result# + h#/3 *(2*f#(i) + 4*f#(i+l))
next i%

DONE:
end sub

135



C *
C Prgm: CorCoeff.FOR ,

C Purpose: Fortran program to create a file containing *
C the values of the correlation matrix. *
C *
C Algoritm: Corrleation is a function of the distance *
C (d) between two points. (d) is calculated by finding *
C the horizontal (b) and the vertical (a) distance *
C between two points and then solving the right *
C triangel equation to find the hypotenues (d). *
C Following this, the Gaussian Correlation coefficient *
C equation is applied. *
C *

parameter( n=15, n2=225, space=.3)
virtual coeff(n2,n2)
real*16 coeff,a,b,d
integer corrow, corcol, refrow, refcol

C Create lower triangle of corr. matrix (symetric matrix)
do 33 i~l,n2

C calculate the row point (i) is in (reference Fig.(21))
corrow = (((i-l)/n)+1)

C claculate the column point (i) is in
corcol = i-(corrow-l)*n)
write(6,*) i
do 31 jl,i

C calculate the row point (.j) is in
refrow = (((j-l)/n)+l)

C calculate the column point tj) is in
refcol = j - ((refrow-l)*n)

C the vertical distance (a)
a = (corrow-refrow)*space

C the horizontal distance (b)
b = (corcol-refcol)*space 14

d = sqrt(a**2+b**2) S
coeff(i,j) = e%-P(-d**2)

31 ]i<ontiinue
.3 crnt inue

,,ipen(0int=I I ,name='rorg3.dat' ,status='N'•")
do 43 i : 1,n2

',rite(6, *) i

do 41 .jl,i
write(1l,*) coeff(i,.j)

4 1 continue
43 (ont inue

IloseOin it=l )
stop

1:36
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C
C Prgn: CHOLESKY. FOR*
C
C Purpose: Finds the Cholesky square root of the
C correlation matrix.*
C
C Algorithm: Implements Eqs (.,<) through c.*

C
C Input Files: The correlation matrix file created by*
C CORCOEFF .FOR*
C Output Files: The lower half of the Cholesky matrix. *

C *5

paraxneter(n2=225)
virtual cor(n2,n2),cho(n2,n2)
real*16 cor,cho,sum
open(unit~ll ,name='corga3.dat' ,status='OL-D')

C Input the correlation matrix (lower triangle)
do 33 i~1,n2

t-rite(6,*) 1

do 31 j=1,i
read(11,*) cor(i,,j)

31 continue
33 continue

elose(unit=11)
decompose into Cholesky sqrt.
do 43 k~l,n2

do 41 izl,(k-1)
sum =0.0
do 40 j~l,(i-1)

sum = SUM+cho(i,j)*cho(k,.j)
40 c-ontinue

cho(k, i )(cor(k, i)-s-um)/cho( i,i)
4 1 c-ontinue

sum =0.0
do 42 j1l,(k-1)

sum = sum+cho(k,.j)**2
42 continue

cho'k,k) = sqrt(cor(k,k)-sum)
413 c-ontinue

COuput data to a file
*ope-n(unit=l1,name='choga3.dat',statuis='\Th')

do 53 k1l,n2
do 51 i = 1,k

* 3 co tine(1,)cok

51continue

stop

N N.



C Prgm: GESURF. FOR ,
C ,
C Purpose: Generate the data which represents the rough *
C surface. ,
C ,
C Algorithm: Implements Eq (c) to generate a set of *
C correlated data points, each of which represents the *
C surface height at a given point. There are two basic *
C parts of this program. The first part generates the *
C vectors of uncorrelated Gaussian and exponential surface *
C heights using a Monte-Carlo technique. The second part *
C multiplies this vector by the Cholesky sqrt of the *
C correlation matrix to get the vector of correlated *
C surface heights. *
C ,
C Input Files: The Cholesky sqrt file generated by CHOLESKY *
C Output Files: A Gaussian and an exponential surface file. *
C ,

parameter(n2:225)
virtual cho(n2,n2)
dimension g(n2),e(n2),sg(n2),se(n2)
integer*4 seed
real*8 ul,u2,api,gNal,eval
character*11 infile,gfile,efile
"trite(6,10)

10 format(lx,'inputting cholesky data file ')
11 format(lx,'input output gaussian file name')
12 format(lx,'input output exponential file name')
C get data from the Cholesky sqrt file.

open(unit=ll,name='chog3.dat',status='OLD')
do 34 i=l,n2

do 33 j-l,i

read(11,*) cho(i,j)
33 continue
34 continue

close(unit=11)
35 continue
C Assign name for the Gaussian surface file

"-rite(6,11)
read(5,*) gfile

C Assign name for the ex-ponential surface file
wTite(6, 12) i

read(1,,*) efile
"-ri re( 6,40 )

C Input a random number generator seed to make this a unique
C set of surfaces
4- fonat( lx,'input seed')

read(5,*) seed
api = 1*atan(1.0)

1':'uit _n



(Prgm GESURF.FOR cont.)

C Monte-Carlo methos of generating uncorrelated Gaussian
C surface heights. The maximum height possible of being P
C generated is 5 standard deviation-s. The variance is set
C tolI
50 ul =ran(seed)

ul =(ul-.5)*10.0
u2 =ran(seed)
gv-al=exp(-ul**2/2.0)/sqrt(2.0*api)
if (u2 .1t. gval) then

g(kount) =ul
kount = kount+1

end if
if (kount .1e. n2) go to 50

C Create the unicorrelated exponential data by Monte-Carlo
kount =1

60 ul =ran(seed)
ul = (ul-.5)*l0.0
u2 =ran(seed)
eval =exp(-sqrt(ul**2))/2.0
if (u2 .1t. eval) then

e(kount) =ul .

kount = kount+1
end if
if (kount .1e. n2) g-o to 60

C open the output files
open(unit=ll,nazne=gafile,status='\NEW')
open(unit12 ,name~efile, status='NEW')

C perform the matric /vector multiplication and output data
do 74 i 1,n2

sg(i) =0.0

se(i) =0.0

do 73 i ,i
sg(i) =sg(i)+_g(j)*cho(i,.j) *

se(i) se(i)+e(j)*cho(i,j)
c wnite(6,*) cho(i,j)
73 continue

74 continue

-4ose(unit=1 1) .w

cI roseuni t=12)
(7- loop back to create another surface if desired.

80 format( Input a 1 if go a-gain, -1 to stop.')

read(6,*) nagain
if (nagain .EQ. 1) then

go to 35

--N. stop



C % s

C Prgm: BUILD.FOR 
%

C *

C Purpose: Builds a data file on the format required by *
C the Radar Cross Section-Basic Scattering Code from *
C the surface files created by GESRF. *
C
C Algorithm: Outputs the proper control codes and *
C parameters to have the RCS-BSC operate in the perfect *
C conductor, physical optics mode and at the proper *
C frequency. Also, outputs the scaled surface data as *
C 392 flat triangle so that there are no convex/concave *
C surfaces. *
C ,
C Input files: A surface file created by GESURF *
C Output files: A data file for input to RCS-BSC *
C *

parameter(nblock=14)
dimension z(15,15),plate(392,3,3)
space=1.0/(nblock*1.0)
api:4*atan(1.0)

C Input the mean surface slope required.S•wTite (6 ,4 )

read[5,*) s
4 format(' Input the atn(s) angle')

C Calculate the scale factor to multiply the heights by.
C Use the equation atan(s)=2h/l and the fact that the
C surfaces were generated with h=1. Thus h=atan(s)*l/(2).
C Since there are a total of (14*.3) correlation lenghts in
C each direction of the surface, a single correlation length
C is equal to 1/(14*.3) units. Therefore, the scale factor
C becomes

scale=tan(s*api/180.0)/(28.*.3)

C Open a surface data file and read in data.
format(' Opened .dat') %
open(Anit=l l,name='G8.dat',status:'OLD')
write(6,5)
do 30 i=1,15

do 20 .j=1,15
read(11,*) z(i,j)

c write(6,*) z(i,j)
20 continue
30 continue

close(unit=ll)

14'.
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(Pr~m BUILD.FOR cant.)

C Calculate the x,y and z coordinates of each corner of the
C triangle to be input to the program as an individual plate.

do 50 n=1,nblock
write(6,*) n
do 40 m=l,nblock i

nop=(n-l )*2*nbloc-k+( 2*m)-l
plate(nop, 1,1 )=(m- ) *space
plate(nop, 1,2)=(n-1 )*space
plate(nop,1,3)=z(n,m)*scale
plate(nop,2, 1 )m*space
plate(nop,2,2)=(n-1)*space
plate(nop,2,3)=z(n,m+l)*scale
plate(nop, 3,1 )=m*space
plate(nop, 3,2 )=n*space
plate(nop, 3,3 )z(n+l ,m+l )*scale

C Calculate total surface area of the surface
delx=(plate(nop,2',l)-plate(nop,1,1))**2
delz=(plate(nop,2,3)-plate(nop,l,3) )**2
xlen~sqrt (delx+delz)
dely=(plate(nop,2,2)-plate(nop,3,2'))**2
delz=(plate(nop,2,3)-plate(nop,3,3))t*2
ylen~sqrt (dely+delz)
area~area+ (xlen*y~len) /2
nop=nop+1

it, plate(nop,2,l)=(m-l)*space
plate(nop, 2,2) =n*space
plate(nop,2,3)=z(n+l ,m) *scale
do 39 nk=1,3

plate(nop,l1,nk-)=plate( (nop-l) , 1,nk)
plate(nop,3,nk-)=plate( (nap-I) ,3,nký)

39g continue
delx=(plate(nop,2,1I)-plate(nop,3,1) )**2
delz=(plate(nop,2,3)-plate(nop,2,3) )**2%
xlen~sqrt (delx+delz)
dely=(plate(nop,1,2)-plate(nop,2,2) )**2
delz=(plate(nop,1,3)-plate(nop,2,3))**2
ylenzsqrt(dely+delz)
areazarea+ (xlen*ylen) /2

t0 continue
50 continue

write(6,75) area
75 forrnat( Area =',fIO.7)

C Output to RCS-BSC fil-e

Cwhile setting parametersI
open (unit= 11, naxnez'G8RCS. DAT',status='\Mh',riaecrn'V7

100 format.( fO8''fO8¾fO
10 5 format('G:')
107 for-mat.("')
110 C-) ma t("'TO:

.- eel"
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115 format('F,F,F,F')
120 format('F,F,F')
125 format('F')

(Prgm BUILD.FOR cont.)

1126 forrnat('T,F,F,FF,F')

135 format('1')F'

145 format('F.,0,90.00.0'

150 format(p9.'
135 formnat('-9090S'
160 format('BK:')
165 forrnat('0.0')09000.1

150 format( 'PP:.';
155 format('T')905'

1765 format('T,.,3')
177 format('0.,0.,0.'

176 forinat('0,30.,10.')

180 format('LP:')
185ý format('T')
190 format('FR:')

19.5 format('5.46')
c last one is frequency Ghz

w-rite) 11, 110)
write) 11,115)
t-Tite( 11,120)
wri te (11, 125)
w-rite) 11,126)
wri tep-( 11, 12 7)

rie(11i, 130)
-rite) 11, 135)
w-rite( 11,140)
write) 11,145)

wrie( 1,150)
-rite) (11, 155)
write( 11,160)

wrt(11, 165)N
write-( 11, 177)
wrife) 11I, 176)

twrite) 11 , 170)U

wýri tpI I , 1R.,__



(Prgm BLDFRcont.)

COuput (x,Y,z) of triangle points
do 250 i=1,2*nblock*nblock

* tsmite( 11,107)

do 220 j=1,3

220. continue
1250 continue
300 format('XQ:')
305 format('E;N:')

isrite( 11,300)

close(uriit=11)
stop
end



Appendix E

Computer Generated Rough Surfaces and

their Computed Radar Cross Sections

This appendix contains the graphs of the computer generated Gaussian

and exponential surfaces along with tables of the computed RCS values.

The tables contain the predicted RCS's for each accompanying figure at

discrete angles from normal incidence (00) to edge on incidence (90w).

The RCS's are tabulated for two different frequencies, 5.76 Ghz and

17 Ghz, and for two different values of mean surface slope (atan(2h/1)).

Therefore, there are four sets of RCS's values associated with each

surface. The combination of a 5.76 Ghz frequency and a mean surface

slope of 50 results in a Rayleigh parameter of h1=5. A mean surface

slope of 250 at 5.76 Ghz results in hk=16. When the frequency is

increased to 17 Ghz, hk=247 at 5 and hk=83 at 250. Each table also

includes the physical optics RCS values for a perfectly flat plate at

the two frequencies for comparison. All computations assume perfect

conductivity. Figure E.21 is added to contrast surfaces with a mean

slopes of 50 and 250.

.1*

-v.

'I..-0.
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GAlUSS RAW SURFACE¢] SI. AITAN 2 5• de, ft.'.

TABLE E. 1

<RCS>/Area in dBsm

Gaussian =01 Flat
a~.on(s) -5 to.n (s)--25S. ................... .. . . . . . . . .......... . ................................................ ... , ............. ......................................

Ang hk-5 hk-27 hk-16 hk=83 k-1i4 ka357

0 14.79 19.42" : 0.34 -11.07 36.20 46.08 ,
5 16.21 16.50 1.82 4.47 10.55 5.64

10 6.71 5.84 13.91 1.86 8.73 7.54
15 -4.93 -11.18 -9.37 0.59 6.25 6.13
20 -14.31 -14.21 11.28 7.71 3.74 -3.96
25 -10.70 -25.35 .27 5.27 1.18 -20.52-
30 -9.72 -13.11 1 .63 4.79 -4.28 -5.54
35 -9.15 -18.38 -0. 74 3.60 -11.69 -. 33
40 -12.61 -15.28 6 35 -11.73 -3.75 -20.65
45 -15.09 -17.21 -15.94 -11.28 -8.26 -5.93
50 -23.09 -25.19 -18.03 -29.15 -17.30 22.52

-17.29 -20.73 -20.53 -25.09 -14.49 -19.59
60 -16.43 -33.70 -15.54 -25.06 -9.85 -10.08
65 -17.58 -19.27 -21.13 -16.52 -37.22 -41.25
70 -15.28 -23.18 i -17.70 -35.32 -17.25 -17.77
75 -18.57 -26.54 -21.99 -21.46 -21.47 -19.83
80 -31.81 -21.51 -27.85 -23.77 -28.48 -31.13
85 -26.11 -28.05 -24.32 -16.06 -28.15 -30.60
90 -36.35 -28.44 -21 .81 -13.91 -99999 -99999
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GAUSSIAN SURYACZ 63., AT*1(S)-25 *•o g.

0

T.A-BLE E. 2

<RCS>/Aitea in dBsm

Gaussian ;02 Flat
a t,,uri s)5 a ta n ( s 25

................... .. ..... ............. . . . . . .......................................... ........ .................................................... h . .. .2 ...h - 6h"8 - 1 w 5Ang h....5.hk-2T hki16 hk:83 k-114 '5T"•

0 18.34 16.55 6.35 6.29 36.20 46.08
5 19.91 19.99 0.61 4.24 10.55 5.64

10 5.92, 2.36 -4.31 6.90 R.73 7.54
15 -2.65 -7.35 1.86 5.46 6.25 6.13
20 -5.51 -13.23 6.15 3.64 3.7-4 -3.96
25 -3.76 -15.72 9.80 -7.68 1.18 -20.52
30 -18.99 -18.87 7.68 5.44 -4.28 -5.54
35 -13 .03 -14.50 5.32 -0.20 -11.69 -7.33
40 -17.51 -18.49 . -0.12 -2.19 -3.75 -20.65
45 -15.03 -20.61 -3.92 -6.94 -8.26 -5.93 ,.
50 -12.45 -15.85 -14356 -13.76 -17.30 -22.52
55 -24.07 -18.95 -17.84 -17.11 -14.49 -19.59
60 -15.01 -17.95 -15365 -17.44 -9.85 -10.08 5
65 -23.49 -31.51 -12.46 -26.00 -37.22 -41.25
70 -16 .67 -23 73 3 -. 1 20 -20.25 -17 .25 -17 .77 -

75 -19.96 -24.77 % -22.06 -28.97 -21.47 -19.83
80 -25.53 -17.39 -21,03 -26.48 -28.48 -31.13 I
85 -25.42 -33.98 -15.95 -20.98 -28.15 -30.60
90 -30.03 -30.19 -15.44 -15.39 -99999 -99999
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CAOISIAN suWr*cK 63. ST*N(U)z23 &*I

0

,.9

TABLE E. 3

Iv <RCS>/Area in dBsm

Gaussian 903 Flat
ao an(s)=5 an(s)=25S.................... -............................... .................................................... , ...................................................

Ang hk=5 hk=27 hkI16 hk=83 k-114 k-357

0 11.36 16.36 7.52 4.46 36.20 46.08
5 11.13 13.57 8.22 -9.48 10.55 5.64

10 -1.98 -1.14 1.97 3.31 8.73 7.54
15 -14.04 -0.23 5.14 -1.41 6.25 6.13
20 -8.16 -12.31 1 -11.63 4.58 3.74 - .96
25 -7.25 -25.38 -12.57 -10.20 1.18 -20.52
30 -11.17 -15.83 5.46 3.44 -4.28 -5.54
35 -11.18 -18.82 . -10.50 5.07 -11.69 -7.33
40 -12.96 -26.90 2.77 3.90 -3.75 -20.65 %
45 -11.00 -16.14 2.31 -8.51 -8.26 -5.93
50 -9.97 -28.52 -10.17 -5.38 -17.30 -22.52
55 -17.78 -27.09 -7.01 -13.40 -14.49 -19.59
60 -14.69 -24.54 -9.24 -22.26 -9.85 -10.08
65 -20.23 -25.69 -11.40 -17.07 -37.22 -41.25
70 -25.89 -25.34 -18.13 -26.89 -17.25 -17.77 7"
t5 -27.65 -22.78 -23.57 -31.47 -21.47 -19.831"
80 -23.97 -18.21 -17.67 -26.36 -28.48 -31.13
85 -25.8 -31. 91 - 22 .03 -2 0 . 60 - 2 8. 1 -30 .60

__9P -29.62 -30.44 -15.47 -16.10 -99999 -99999
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CAUSSIN ZU 'IC 64 iT*N(lS) z 25 4

N

T.\BLE E. 4

"RRC.,>/Area in dBsmr

Gaussian "04 Flat

Ang t k h k 27 hk=16 hk-83 k 114 k-357

0 29.28 26.90 6.23 8.47 36.20 46.08-8.4 8.37 6.70 6.18 10.55 5.64

7..22 105 9.28 1.28 8.73 7.74
15 2.45 0.36 2.F,4 4.41 6.25 6.13
20 1.38 -12. 13 1.21 -3.19 3.74 -3.96
25 -1.q9 -11.6"5 -3.19 -8.51 1.18 -20. 2

P-2.2 -8.28 -17.92 -12.52 -4.2S -5.54
-- -12.85 -16.43 -11.01 -24.25 -11.69 -7.33

40 -5.64 -12.12 -21.15 -31.19 -3.75 -20.65
45 -17.91 -18.32 -21.72 -24.22 -8.26 -5.93
50 -44 50 -12.72 -21.90 -22.14 -17.20 -22.52
55 -39.19 -12.96 -19.43 -26.90 -14.49 -19.59

60 -12.85 -19.52 -22.33 -19.81 -9.85 -10.08
65 -21.31 -21.97 : -28.96 -26.43 -37.22 -41.25 5
to -16.25 -25.03 -23.97 -24.24 -17.25 -17.77
75 -20.42 -20.70 -25.69 -25.63 -21.47 -19.83
80 -29.43 -21.02 -24.09 -28.07 -28.48 -31.12
85 -29.56 -41 .32 -27.34 -17.05 -28.15 -30.60
90 -36.28 -34.10 -20.60 -18.70 -99999 -99999
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iUSS]IAN SU,"CE" 05, ATAN($ 25 (eS

:',

~.6 TABLE E.5

(U <RCS>/AVea in dBsm

Gaussian -05 Flat
a atan(s),5 t.an(s)25

Ang hk-5 hku2T hk=16 hk=83 k-114 k-57t
0 24.99 26.30 11.56 5.55 36.20 46.08
5 10.01 -6.05 0.57 5.54 10.55 5.64

10 -12.67 -10.83 13.33 8.82 8.73 7.54 ".
15 -4.07 -12.19 6.34 6.21 6.25 6.13
20 -14.18 -16.63 . 0.79 -19.23 3.74 -3.96
25 -10.61 -16.40 -6.52 -6.10 1.18 -20.52
30 -8.94 -16.05 -5.34 -12.85 -4.28 -5.54
35 -9.79 -23.31 -20.27 -23.71 -11.69 -7.33
40 -12.15 -20.79 -16.71 -20.42 -3.75 -20.65
45 -10.13 -24.87 -26.73 -20.01 -8.26 -5.93
50 -12.11 -29.71 -21.40 -26.18 -17.30 -22.52

"55 -11.99 -22.62 -21.08 -23.48 -14.49 -19.59
60 -13.87 -18.45 -28.22 -25.56 -9.85 -10.08
65 -25.13 -39.13 -22. 5 -32.95 -37.2. -41.25
70 -21.51 -38.28 4 626.55 -37.09 -17.25 -17 ...

-24.91 -23.10 24.74 -29.82 -21.47 -19.83
80 -24.85 -21.16 -23.48 -24.08 -28.48 -31.13
85 -27.83 -43.52 -27.68 -25.39 -28.15 -30.60
90 -28.82 -35.44 [44.12 -21.19 -99999 -9999r4

1'.9
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GAUShIAN SUWACZ M.ATOM($) 25 Jeg

V

a'.

%

TABLE E. 6

<RCS)/Area in dBsm

Gaussian =06 Flat
s)=5 '3 ts)5 Iu k s 2

A-n E tk=5 hk= 2- 7 hk= i 6 hk-=83 k= 1 1,4 k= 53.

0 25.92 18.99 12.5? 3.96 36.20 46.08
3 19.97 -0.36 14.17 6.11 10.55 5.64

10 12.57 6.32 1.16 3.12 8.73 7.54
15 -6.07 -2.79 6.18 -5.52 6.25 6.13
20 -17.46 -3.51 3.94 -6.24 3.74 -3.96
25 -4.20•2 -10.59 2. q.97 4. 13 .18 -2c.5-2
3? -18.59 -17.00 10.61 3.31 -4.28 -. 54
35 -16.40 -28.88 -3.T2 3.722 -11.69 -7.33
40 -19.56 -21.80 3 .50 2.46 -3.75 -20.61
45 -13.90 -17.54 2.31 2.71 -8.26 -5.92
50 -10 -17.80 0.81 -7.37 -17.30 -22.52
33 -20.02 -17.70 -13.40 -12.51 -14.49 -19.59 0
60 -14.29 -31.50 -14.42 -16.74 -9.85 -10.08
65 -26.45 -21.42 -19.43 -25.33 -37.22 -41.25 5
70 -21.99 -29.42 -11.25 -22.68 -17.25 -17.77
75 -24.50 -28.51 -19.07 -30.77 -21.47 -19.83,

80 -24 .44 -16 .25 -38 .53 -18 .06 -28 .48 -31 .13 F %

85 -28.04 -38.50 -20.80 -24.-66 -28.15 -30.6 F
.,9) -32.52 -6.83 -7.99 -32.30 -99999 -99999

-15.
•.5
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CAUSSIAN SURI.CK 47, ATAN(S) 25 Avg

it, ,

TABLE E. 7

S<RCS>/Area in dBsm

Gaussian :07 Flat
a•Lr s'=5 ut,.n -s)=25

I ....... ................................................. ............ ........ ..................................................

"Ang hk- hk=27 hksl6 hk"83 kk114 ks357

0 11.81 23.90 0.68 -2.85 36.20 46.08
8.19 16.76 6.26 -0.27 10.55 5.64

1o 8.15 7.23 2.17 -2.39 8.73 7.54
15 -6.15 -19.06 9.80 -5.65 6.25 6.13
20 -16. 13 -10.15 -1.41 2.69 3.74 -3.96
25 -13.25 -12.20 6.02 -13.37 1.18 -20.52

-17.07 -26.28 -3.07 -9.23 -4.28 -5.54
"" - 024 -23 90 5 78 -4 13 -11 .69 -7 3 33
40 -15.45 -20.80 -3.77 2.17 -3.75 -20.65
4 -1 71 -20.54 -3.93 -14.91 -8.26 -5.93
50 -14.76 -16.66 -13.91 -21.50 -17.30 -22.52
55 -17.*35 -20.8 : -10.54 -28.9 -14.49 -19.589
6o -12.83 -21.67 -24.64 -30.06 -9.85 -10.08
65 -24.39 -28.84 -15.50 -25.62 -37.22 -41.25
70 -18.46 -30.99 -24.60 -23.80 -17.25 -17.77
75 -21.38 -24.93 -28.55 -31.28 -211.47 -19.83
80 -26.40 -20.11 -36.55 -30.87 -28.48 -31.13 A

85 -25.11 -35.64 -18.45 -25.65 -28.15 -30.60 I
,90 -29.28 -32.28 -15.01 -17.73 -99999 -99999
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GAUSSIAN SU5ACK 0s, ATAN(S 25 JAg

TABLE E. 8

(RCS>/Area in dism

Gaussian E08 Flat
I at. ari( s )=5atan(s),25

Ang hk= 27 hk-16 hk-83 k-114 k=357

0 26.20 21.81 9.54 3.08 36.20 46.08
5 12.20 7.08 1.19 12.16 10.55 5.64

10 10.57 11.41 1.87 9.72 8.73 7.i4
15 4.46 -3.26 -3.69 3.71 6.25 6.13
20 -2.07 -11.98 -5.98 3.93 3.74 -3.96
25 -3.20 -19.01 0.38 8.41 1.18 -20.52
30 -8.41 -14.08 3.23 -2.86 -4.28 -5.54---
35 -21.74 -20.29 4.19 2.00 -11.69 -7.33,
40 -6.99 -19.97 4.80 .38 -3.75 -20.65

45 -15.49 -18.86 2.60 - .16 -8.26 -5.93
50 -17.01 -17.48 -6.13 --. 47 -17.30 -22.52
55 -24.15 -17.38 -5.18 -14.24 -14.49 -19.59
60 -11.86 -21.23 -23.22 -19.62 -9.85 -10.08
65 -22 .94 -24.58 -15.66 -25.00 -37.22 -41.25 5
70 -16.68 -22.36 -13.14 -26.75 -17.25 -17.t,
75 -19.81 -22.14 -21.61 -25.56 -21.47 -19.831,
80 -26.64 -19.18 -15.24 -22.22 -28.48 -31.13
85 -26.16 -47.67 -18.27 -16.03 -28.15 -30.60
90 -36.09 -32.19 -22.03 -17.68 -99999 -9999,-
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CAUSIAN SURFACE 09. ATAW(S) 25 Jg 1 ."1

S

a~~~~~~~r L ,s), 3t(ar

U-ge

0t 1n s 5 .a616 0t. 16 s 4 .04 36.2 6 0

5 12.95 13.82 11.5,6 11.2-7 10.55 -55 64"
10 -3.28 -11.40 1.16 1.95 8.73 7.54.•-
15 -9.25 -10-04 0.67 2.37 6.25 6.13 •

20 -13.72, -9.65 0.47 13.71 3.74 -3-96 ••,
25 -16.53 -14.57 1.14 0.09 1.18 -'20-52
30 -6.89 -11.06 -3.66 -6-44 --4.28 -5-54 -'

S -9.6) -16.86 -9-94 -15.77, -ii.69 -7.33•
10 -13 P,0 -13 .98 -8 -14 - 13 . 1, -3 . 7 -20 6,.----

45 -!4.7C -16.96, -14.88 -1 0 -8 2 116 -5 93 t,
50 -12 , 1 -21 .22 -24 .96 "-2- 19 -17 .30 -2)2 .5 2)".

55 -19.70 -25.41 -23.39 -25-34 -14-49 -19-59__
60 -13 .55 -24 .75 -24 .36 -36 -52 -9.85 -10-08 --•
65 -26.59 -24.80 -25.55 -22.05 -37.22 -41-25 ••'-
70 -19.02 -28.84 -27.O1 -27.07 -17.25 -17.77 •"€"

75 -22.60 -29.77 -3"11.11 -23.i6 -21.47; -19-83 V.•

80 -30 .43 -20 .38 -22 . C, - 33 56 - 28 .48 -3 31 -13 '%-.
85 -30 .39 - 3 C 0 2 -331 05 - 39 .75 - 2 8 .15-- -30 -0 F

.- ?' q -34.78 -431.1 -20.36 -28.79 -99999 -99999 -_

"""5
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4,1

chuJssrhm SURFACZ tie, ATAMMS = 3 aef

TABBLE E.1

<RCS>/,'.ra .n dBsm-

I Gaussian :10 Flat

A•n hk=5 hk .27 h=lo Ihk = k-114 k=357

0 19.38 24.88 10.69 4.81 36.20 46.08
15.3.)4 20.54 4.47 -7.37 10.55 5.64

1 -4.22 -3.17 5.47 0.32 8.73 7.54
15 -8.52 -7.78 5.35 -2.39 6.25 6.13
20 -10.80 -14.66 8.50 1.00 3.74 -3.96
25 -22.40 -14.94 6.78 4.98 1.18 -20.52
30 -16.85 -29.63 4 .35 4.62 -4.28 -5.54

-13.97 -15.45 -22.71 -0.87 -11.69 -7.33
40 -17.89 -21.25 -7 .07 -23.54 -3.75 -20.65
45 -21.54 -30.89 -29.34 -33.15 -8.26 -5..93
50 -16.54 -19.83 -25.23 -16.39 -17.30 -22.52

-21.14 -22.65 -17.69 -27.08 -14.49 -19.59 --

60 -17.69 -22.93 -26.05 -25.69 -9.85 -10.08
65 -22.76 -26.75 -27.32 -35.36 -37.22 -41.25
70 -17.25 -24.37 -20.61 -23.81 -17.25 -17.77
75 -20.14 -39.39 -21.05 -20.26 -21.47 -19.83
80 -32.68 -18.68 -22.89 -27.32 -28.48 -31.13
85 -26.87 -31.20 -18.86 -20.67 -28.15 -30.60
90 -42.33 -35.37 -28.70 -20.78 -99999 -99999

154

a.:.



I

O4RM lrlL ZUlrAC. 01, &TON(&) = zs ie

TABLEF E.1I

S<RCS>/.-trea in dBsm

Exponent ial =01 Flat
ci t an s Q5 . L,. uh i s 2;

A- g rt Z hk '"5 h k -27 h hk -16 h k -83 k -1 14 k -3 o- *

II

0 18.97 20.71 5.69 0.63 36.20 46.08 ,•l
5 3.87 4.24 : 2. 0 - . 3 10.55 5.64.

I G 8 .4 2 4 .3",0 10.03 - I C.53 8. 73 7 .54 •
15 0.03 -4.40 :: -14.36 4.37 6.25 6. 13 %'
20 -1F•.50 -4.63, 1.63 -8.13 3.74 -3.96

-9 -9.47 -1-5.38 i -1 .61 -3 .66 1 .1L8 -00 .5n
30 -8.98 -14.18 -4.76 2.54 -4.28 -3.54
35 -13 .16 -38.60 -0. 8 2 0.96 -1 1.69 -7 .33
40 -17.31 -31.93 ! 1.00 4.03 - .7 -2 6.65
4, -27 .69 -2 33.44 2). 36 0. 18 -8. 26 -5 .9"),

5-1 5 324 -21 O11 -_ 1 -8 .69 -I17T 30,2"01 e) 2
55 -18. 9 -21 .6 P, -14 .39 - 2- .60 - 1 4. 119 -19. 5 1

60 -20.,00 -2 4.32 2) - 7.06 -,. '° 50 -9 .85 -10 .08
65 - 2 3. 39 -32 .61 i-19. 50 - 2 1.97 -37 . .2 1: -4 1. 25
70 - 19 .18 -26 .82 -2 1. 21 - 2 7.95 -17 . 25= - 1 ....
75 -22.69 -29.50 -23.58 -20.08 -21.47 -19.Pi,
80 -29.24 -18. 16 -19.73 -25.01 -28.48 -31. 13
85 -27.54 -30.18 -31.17 -25.06 -28.13 -30.60

L•""90 1-38.22 -35.05 -23.79 -20.57 -99999 -99999
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> 4,'

D2PO95UfIAL SUPFA.1 02, AT*94(S) 23

TABLE E. 12 •

Exponential tO02 Flat-"
a an s) 5 a tcn (s) 25 %:

Ang hk=5 hk=27 1 hk=16 hk=83 k-114 k-357•~

0 1.92 11.15 : 5.03 -1.26 36.20 46.08
5 16.48 18.05 2.27 4.03 10.5= 5.64 6

10 P.74 -2.41 -14.91 4.62 8.73 7.54 "
15 -9.48 -8.92 7.26 -2.98 6.25 6.13.,
20 -9.69 -10.68 ! 6.40 1.27 3.74 -3.96"-

,'U

25 -10.01 -16.48 -0.17 -2.76 1.18 -20.52
30 -15.09 -19.96 5.01 -0. 13 -4.28 -5.54
35 -10 . 25 -20 .75 6 6.76 6.10 -11.69 -7.33
40 -25.84 -23.04 -3.28 5.26 -3.752 -20.65

5 16.481 -50 .812.35 1 4 -8.26 -5.93
50 -21 .721 - 2)2.436 - 11.05 - 14.22 817.30 -22.52
15 -92.23 - 7.80 20 -2.918 .0 142.49 -19.59
F60 -17.26 - 08 16 15 -19.45 -9.85 -10.08
65 -128.91 -27.18 -15.28 -29.14 -37.22 -41.25
30 -23.03 -28.48 -33 03 -22.25 -14.25 -I,.54
75 -21.91 -37.67 -24.81 -27.26 -21.47 -19.83
80 -28.33 -25.97 -32 836 -26.11 -28.48 -31.13

85 -26.55 -39.14 -20.38 -28.06 -28.-15 -30.60
90 -38.37 -43.70 -23.83 -29.16 -99999 -99999
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]U] &Cl 43, •ItAN(C) 25, Sg

I.,

TABLE E.13

<RCS>/Area in dBsm

Exponential z03 Flat
at-on( s -5 ot.ari( s 25

-%ng hk 5 hk-27 . hk-16 hk=83 k s 1 1 4 k=357

0 22.52 22.25 -0.02 11.71 36.20 46.08
5 18.13 12.19 5.31 0.98 10.55 5.64

10 4.23 0.33 8.72 -3.04 8.73 7.54
15 -6.58 -7.78 4.43 4.14 6.25 6.13
20 -7.73 -13.10 -1.60 -8.99 3.74 -3.96
25 -20.44 -10.21 5.79 3.83 1.18 -20.52
30 -21.87 -22.98 . 2.61 2.94 -4.28 -5.54
35 -31.18 -12.22 1.20 1.22 -11.69 -7.33
40 -22.62 -15.07 . -2.48 3.89 -3.75 -20.65
45 -26.77 -19.91 . -9.62 -24.66 -8.26 -5.93
50 -19.14 -20.36 -8.46 -24.16 -17.30 -22.52
55 -38.55 -28.51 '-30.94 -25.82 -14.49 -19.59
60 -19.83 -21.14 -17.10 -16.55 -9.85 -10.08
65 -22.37 -29.15 -9.77 -24.15 -37.22 -41.25
70 -15.72 -32.34 -21.99 -16.53 -17.25 -17.77
,5 -19.01 -29.61 -21.26 -21.49 -21.47 -19.83
80 -30.51 -18.51 -36.10 -30.14 -28.48 -31.13
85 -23.41 -40.38 -12.12 -32.00 -28.15 -30.60
90 -28.79 -28.91 -14 .28 -14 .35 -99999 -99999
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p

EXOHM EIAL SnURaOC 94, *TAN($S) 25 ae p

POW.

*1

TABLE E.14

<RCS>/Area in dBsm

Exponential z04 Flat
a•, r t s) -5 a t-ar(s) 25 s 2

Ang hk-5 hk-27. hk-16 hk=83 k-114 k=357

0 20.87 19.08 5.38 1.80 36.20 46.08
5 16.13 2.80 2.61 0.10 10.55 5.64

10 1.46 0.09 7.10 -3.11 8.73 7.54
15 -8.49 -5.61 6.01 -4.02 6.25 6.13
20 -8.52 -20.11 2.31 -1.73 3.74 -3.96
25 -12.16 -22.09 -2.23 1.62 1.18 -20.52
30 -14.88 -18.10 -1.20 -5.84 -4.28 -5.54
35 -24.03 -38.99 8.15 8.07 -11.69 -7.33
40 -2:5.3 -28.1.5. 2004 -35 -20 65---..-- .. 2 0.-.5)

4. -21 .66 -29.79 -13.01 -19.71 -8.26 -5.93
50 -24.41 -26.96 . -37.23 -25.01 -17.30 -22.52
55 -20.87 -30.13 -16.20 -24.14 -14.49 -19.59
60 -27.83 -40.32 -20.62 -34.67 -9.85 -10.08
65 -22.09 -39.75 -22.92 -36.49 -37.22 -41.25
70 -22.71 -24.94 -35.08 -23.44 -17.25 -17. 77
75 -25.59 -32.27 -28.65 -37.61 -21.47 -19.83
80 -34.21 -38.39. -34 .0 -27.75 -28.48 -31.13
85 -31.68 -42.19 -28.24 -27.97 -28.15 -30.60
90 -33.25 -28.27 -19.23 -13.83 -99999 -99999
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EXPONDMTAL guRiracz #5, aAT(S) 25 aog

I'

TAB LE E. !

S<RCS>/Area in dBsm

E:.Fonential zC, 1 Fia' ,

A n g ......h • = " ... {, = a . ... .. ~ k' 'l" ... . k ' i ... ....... ..J] i" .............. .. •" ......
Nghk=K lik=27 hk-16 hk-83 k=1 14 k= 15-

0 16.92 15.14 4.89 -1.48 36.20 46.08
5 19.02 14.87 0.01 -1.24 10.55 5.64

10 3.16 3.55 -7.49 -1.89 8.73 7.54
15 -5 31 -7.94 -2 2'22 0.95 6.25 6 133
20 -10 .77 -18 .29 1 95 2 .77 3 .74 -3 96 6
25 -13.74 -39.03. -1.58 7.71 1.18 -20.52
30 -17 422.2- 4.69 -0.72 2 -4 28 -54

5 15 05 -20 .62 -1. 4 -3 94 1 .69 -733
40 -2, ., 6 -2 6* •.52 -6.86 -11.-6 -3.75 -2 6' €:."6

4- _,R. ' -2P .,? -. 41 -4 83 -8 .26 -5 .9 V
52 -17.82 -32.96 -11.13 -15.16 -17.30 -22.52
55 -25.56 -28.26 -13.55 -17.59 -14.49 -19.59
60 -37.33 -22.09 -17.39 -2-9.52 -9.85 -10.08
65 -19. 96 -25.07 O -18 26 -23 .26 -37 22 -41 25
70 -32 .7o -23 62 -22 91 -21 38 -17 .25 -17 T
75 -41.57 -32.67 -19.06 -17. 8 -21.47 -19.82
80 -24.85 -30.32 -19.03 -37.60 -28.48 -31.!13
85 -31.52 -27.56 -19.26 -30 57 -28.15 -30.60
90 -29.71 -29.62 -15.16 -15.27 -99999 -99999

159

.......................-..-...........-........-.--...--..-.-.-....-.....-- ,.-..,.-...-.-.-.--.-o.I.-



I'
WXPO MITi*L SURFACE St. ATAMH(S) - 25 Aeg ,.

i .-BLE E. 16

fo <RCS>/,-%ea in dBsm

Exponent ial z-'(6 Flat
a<r3 f- u5 r a f- j r = 2 5

Angc. h k- 5 h k -27 tk ik - h k -83 k - 14 k-3 5-7

0 '23.18 21.23 : -4.07 7(.50 36.20 46.08
5 9.97 10.45 : 11.:13 6.56 10.55 5.64

10 8.51 0.12 11I .85- 11.04 8.73 7.54
15 -4.59 -2.92 3.56 10.19 6.25 6.13
20 -11 . 13 - 1 1.86 2 2.49 5 .42 3 .74 -3.96
25 -11.91 -17.71 ! -9.31 -3.47 1.18 -20.52
30 -25.57 -18.44 i -4.56 0.37 -4.28 -5.54
35 -14.06 -22.60 -4.24 -I1.20 -1i1.69 -7.33
40 - 17.51 -25 .18 -7 .65 -16 . 74 -3 .75 -20 .6 5

•5 -!2. 12 -35.9*3 -6.82 -5.32 -8.26 -5..9
50 -15.38 -29.64 -5.48 -1.63 -17.30 -22.52

55 -17.46 -28.68 "-13.74 -12.16 -14.49 -19.=9
60 -16.83 -28.46 :-16.80 -21.03 -9.85 -10.08
65 -24.89 -30.771 • -22.38 -19.17 -37.22 -41.25
70 -20.65 -28.05 i-18.36 -35.45 -17.25-- -17,.77
75 -23.54 -25. 34 -20 49 -29.32 - 2)1 .47 - 1 .83

8.r - 6 .9.- 0 85 - 22 .9 -2:9 .97 -28 .48 -31 .131
85 -25. 42). - 0 . 5, 7 - 2 6j:, - 2..- 2 2 •.0 -28'.. 17- - 0,O. ,
-In 9-411.05 -35.74 -26,7:• -21.211 -99999 -99999
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TABL E E.-17

(RCS)/Area in dBsm

Exponentia'l :07 Flat1

A ng h 5 h k 2 7 f.k16 hI=63

0 7.68 17.38 0.73 -5.50 36.20 46.08
j0.77 14.07 1.16 -1.89 10.55 5.64

10 2 .24 i1 .75 -4 .3 2 -0. 22 8. 73 .5
j 9 -6 .71 15 4 It7 2. 38 6.25 6 .13

20 -10.97 -14.54 3.00 3.50 3.74 -3.96 I

25 -9.58 -203.46 2.91 -5.39 1.18 -20.52
30 -13.04 -13 .28 -9 .73 -1 .83 -4 .28 -5 .54
'5 -19.18 -23 .57 -5.5q -1.67T -11 .69 -7.33
40 -3. 17 -116 .78 -8 0 3 - -14.58 -3. 751 -20.F,65
42 -28 .570 -2 7. 14 295 -2 5. 224 -8 .216 -5.93

70 -14.7 -20 .80 -16.64 -38 .61 - 17 .30 -22.52
j -18.61 -21.26 -15.26 -26.28 -14.49 -19.59

60 -32.-0 0 -19 .30 -21 .75 -32 .71 -9 .85 -10 .08A
65 -18.37 -28.44 -21.63 -34.25 -37.22 -41.25
70 -2'3.42 -31,21 -26.74 -23.84 -17.25 -17.77,
15 -26.04 -333.2-7 -21.83 -29.63 -21.47 -19.83
80 -2 5.68 -23. 83. -21.74 -25. 94 -28 .48 -31 .13
85 -29.91 -41.39 -22.89 -18.96 -28.15 -30.60

190 1-34.30 -29.81 -119.77 -15.27 -99999 -99,999
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, e
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T7FL E.4 .

I • ,R('S iArea •n d~sm

E'.rIer0 a, 74 f3 Flat 9
*,J t ,3 fl S * S t f,. l ,-,)I • : •.

8= hk 2 k - ., 3 k 1.1., k 4 .5

' .4- 19 9.) 8-6 -. -5 36.2) 46. 92
-12i9 2 4 93 - 1 055 9 3

1'-9.76 4.92. -'-.41 6.97 8.73 .54
15 -10.23 -4.97 565 2 8 6. 25 6.3

2 .15.59 -16 18 -3 40 -0 95 3.74 -3. 36
-4 8A -18. 0 -. 510 1.54 1 .8 -20 52 14.30 12.•95 -16. 58 .•_ 92 o5.95 -4.28 -. 5_ I

1 0 1 -2-. 91 3-18 2 04 -11.69 - .32
45 14.6-; -1687 42 -3.76 -3.7 7 22>7

-30-20', -17.22 -8.26 -3 7-19.29 -14.38 -19.06 -17.30'-_)5 .2
5 -37.8 -26 .12 -20 59 -295. 29 -14 .49 -19 .59

60 -13.35 -24.91 -14.88 -20.62 -9.85 -10.08
65 -27.37 -33.37, -23.5, 4 -39.22 -27 .22 -112

S70 -18.38 -29.89 -17.07 -35.02 -17.25 -1 7.
, 5 -21.75 -'34.30: -26.50 -29.57 -21.47 -19.23

80 -28 .86 -23. 59 -28 .25 -24 .87 -28 .48 -31 13
85 -26 99 -35 04 -25 74 -22 .38 -28 .15 -30 60
90 -31 12 -31 01 -17 28 -15 83 -99999 -99999

162

:



W~M IL SUFAC S$ ATACS -2 Ass V.@

P

I

<'p

",,%

TABLE E. 19

<RCS>/Area in dBsm

Exponential z09 Flat
at~an(.)-5 ator'i(s=-25 S.. .... ..... .. .• .. . .. .. .. ...... .. ....... ....... ...... ... ... ... ..5 .................... ...... ....... . . ........ _

Ang hk,5 hk-27 hk-,6 hk.83 k-114 k-357

0 24.06 22.11 6.59 15.15 36.20 46.08
5 16.34 15.73 6.28 -18.36 10.55 5.64

10 -4.22 0.26 2.93 4.78 8.73 7.54
15 -3.87 -11.04 -0.12 -14.89 6.25 6.13
2) -4 .FC, -10 .52 -4 ,-0 -6.14 3.74 -3 .96

S --. 64 -9.43 3.22 -1.08 1.18 -20.52
30 16 .10 -14 .16 -625 -1 31 -4 .28 5 54

-23.4l) -14.28 -7.60 -10.31 -11.69 -7.33
40 -11 . 56 -18. 15 -19. 8 -19.90 -3.75 -200.65
4 -1 7 -18.15 -13.19 -21.92 -8.26 -5.93 3
5, 1 -2 .69 -2-3.7 5 -2.1 2 -32. 51 -17 .30 -22.52 .

-26.75 -22.89 -20.51 -26. 18 -14.449 -19.59
60 -14.73 -25.47 -29.25 -23.10 -9.85 -10.08
65 -22.17 -28.13 -23.03 -25.82 -37.22 -41.25
70 -17.61 -26.87 -21 .06 -24 .30 -17.25 -1.77
75 -21.03 -24.82 -24.62 -20.64 -21.47 -19.83 %
80 -35. 75 -21.62 : -28.56 -30.58 -28.48 -- 31. 13
85 -30.72 -33.95 -38.19 -25.56 -28.15 -30.60
90 -34 . -32) .6 -20 .37 -19 .90 -99999 -99999
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TA-)BLE E. 20

(RCS)/Area in dBsrn

Ex:ponential :10 Flat

A ng h k- h k 27 1.k=1 6 h k-8 3 k 1 14 k 35 T

0 16.48 15.64 0.92 -5.37 36.20 46.08
5 12.64 4.54 -4.17 1.41 10.55 5.64

10 9.60 10.59 -16.42 3.03 8.73 7.54
1.5 -2 .51 -5 .3'5 -14 .47 6.07 6 .25 6 .13
20 -33 .75 -121.59 0.-58 5.1 43 .74 -39

21-.8 -0.92- -10.55 23 .8 -20.5
3 -1 0. 41 -15.95 -13 .76 -7 . 41 -4.128 -5 .5I
3 -2 6. 71 -19.43 -14.09 -12.93 1 1.69 -7.3

a41) -12.23 -19 .58 -8.-35 -2 9 .99 -3. 7:5 -20 .

I i Q. -2)0.24 -0. 50 2 .87 -. 26 -5 .9
2 6 -C5 -2.6 1 -- 1. 41 -7 .3 - 5

-'). 72 >8 -12.40I -22.72 -14.49 -9
6 0 -24.5 - 0. -1. -6 .4 -9.85 1l0 .
6 5 -314.82 -30 .00, -13 .98 -25 .39 --37 .22 1

70 -2'2 .79 -214 .19 -30 .77 -29 .33 - 17 .2 -)7) 17.7
75 -23.-3 3 -24.80 -26 .10 -28 .15 -21 . 47 -19 .83,
80 -27.91, - 30.60 - 21.27 -33-2.22 -28 . 43 -.
85) -2P6.46 2.0 -2-5.13 -2: .84 -8.5 -

i 90 .20 -272 -9.? -25 -999 999
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